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CHAPTER I

INTRODUCTION

Radar Target Identification (RTI) techniques have been developed over the

past several years. Work at The Ohio State University (OSU) ElectroScience Lab-

oratory (ESL) has established basic concepts and algorithms that form a wide base

of methods for solving the RTI problem [1 - 17]. Research areas have included the

investigation of optimal frequency ranges [13], where wavelengths extend from the

Rayleigh region to the optical region, and polarization studies [6] involving various

linear and non-linear combinations of the radar scattering coefficients. Various

identification algorithms have also been analyzed by computer simulation tech-

niques and applied to different radar class structures, such as land vehicles, ocean

ships, and aircraft [13 - 17].

Ksienski [1] concluded that the optimal frequency range for radar target iden-

tification should lie in the Rayleigh - resonance frequency range where the wave-

length is about the same size or larger than the size of the target. In the Rayleigh

region the scattered field is descriptive of the shape and volume of the target. In

the resonance region the scattered field is due to re-radiating surface currents set,

up on the target body and also carries target shape and size information. In both

S,"of these regions a desired feature for target identification is found; shape and size

S"-. information and small changes in aspects have little effect on the character of the

radar return.
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In contrast, in the optical region, where the wavelength is small compared

to the target size, small changes in aspects can cause significant changes in the

scattering characteristics. The scattering mechanism in the optical region are

related to the interaction of the specular points and contain information on the

finer details of the target. If the separation of the specular points is large compared

the incident wavelength; small changes in aspects cause significant changes in the

scattering characteristics.

The ESL has developed a multi-frequency data base consisting of ocean ship,

aircraft, and ground vehicle radar signatures, and has explored radar detection

methods and various classification methods for each class of targets [5]. The ESL

has also been involved with the statistical analysis in system simulations, model

developments, and evaluation of system performance by means of Monte Carlo

simulations [7].

To apply target identification techniques, one must have a library of informa-

tion or features (i.e., feature space) describing each target to be identified. The

feature space is a multidimensional space containing vector quantities. In the fea-

ture space one would like to have linear separability between all the targets, thus

forming distinct hyperplanes between elements contained in the feature space. In U

the case of complex targets, such as aircraft, ships, and ground vehicles, one might

attain distinct hyperplanes (i.e., separability between the three classes). However

within a class, say of small jet fighters, features creating distinct hyperplanes may

be impossible to determine.

For the radar problem, the feature space consists of information contained in

the electromagnetic energy return from the scattering object. Information avail-

able from this energy spectrum depends on both the transmitter and the scatterer.

Features such as the transmitted frequency, received amplitude, transmitted po-

2



larization, received polarization, and target range, are available to most radar

systems. Others features, such as received phase, target speed, target direction,

and Radar Cross Section (RCS) can also be obtained.

4It is apparent that feature selection is a very important consideration of the

radar target identification problem. Of course one would like to have a large

catalog of features to choose from in order to make the best possible decision that

identifies the target correctly. However, by selecting more features, the complexity

of the measurement, the cost of the system, the dimensionality of the classification

vector, and the data processing, all increase. To minimize the cost and expedite

the decision making process, one needs to select optimum features that meet some

level of target identification performance.

The properties of the polarization diverse data base allows the investigation of

many new and different radar polarization states by creating circular polarization

states and new identification target descriptors known as "feature vectors". With

the goal of obtaining additional knowledge on optimal feature selection, this study

analyzes the performance of many different radar polarization states, frequency

ranges, and the number of frequencies by means of a Monte Carlo simulation.

This study also validates earlier results based on optimal RTI methods by analyzing

. ' ,these methods on a more complete and realistic data base of commercial aircraft.

With the contents of the report, we hope to give the RTI designer some insight on

the tradeoffs and characteristics of the aircraft class of targets.
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CHAPTER II

DATA AND DATA BASE FORMAT

2.1 Introduction

In order to implement a Monte Carlo simulation, a data base is required. The

data base for this simulation study consists of calibrated complex monostatic radar

returns from five metallic coated scale model aircraft: Concord, DC10, 707, 727,

and 747. The silhouettes and the full-scale dimensions of these commercial aircraft

are shown in Figures 1 through 5.

The data base consists of calibrated complex (coherent) monostatic radar re-

turns measured at various azimuth angles, frequencies, and polarizations, at an

elevation and roll angle of 00. The data was taken at the OSU ESL compact range

facility [181 over the frequency bands of 1 to 12 GHz and 18 to 35 GHz (unscaled).

Once the data were measured, a sequence of calibration steps were implemented

to remove unwanted background clutter and receiver system effects. Using an en-

hanced sequence of calibration steps, described by Kimball [19], one can obtain an

essentially error (noise) free measurement of unscaled coherent radar backscatter-

ing information. A brief description of the compact range, measurement squence,

calibration steps, and data scaling are provided in the following sections.

4
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axtertial Diaensiena

Length ove ral 02: ft 3.6 in (61.66m)
Height overall 40 ft 0.0 in (12.19m)
Wing span 63 ft 10.0 in (25.56m)

Figure 1: Concord Silhouette and Physical Data

.~Length overall 161 ft 7.2 in (SS.35ml
~ Height overall S7 ft 7.0 in (17.5%.)

Wing span 165 ft 4.0 in (50.39.)

Figure 2: DC10 Silhouette and Physical Data



external bisenuions:

Length overall 152 ft 11.0 in (46.61a)
eight overall 42 ft 5.0 in (12.93a)

Wing span 145 ft 9.0 in (44.42s)

Figure 3: 707 Silhouette and Physical Data

9.41

external Dimensional

Length overall 153 ft 2.0 in (46.69a)
Height overall 34 ft 0.0 In (10.36m)
Wing span 106 ft 0.0 in (32-928)

v Figure 4: 727 Silhouette and Physical Data
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1 trnal Dimensions:

Length overall 231 ft 4.0 in (70.513)
Height overall 63 ft 5.0 in (19.33)
wing span 195 ft 6.0 in (59.64m)

Figure 5: 747 Silhouette and Physical Data

2.2 Measurment Facilities

The OSU ESL compact antenna range facility consists of a 60 foot long by

Z' 40 foot wide by 20 foot high anachoic chamber. The facility utilizes a Scientific

Atlanta (SA) compact range parabolic reflector, a SA 1780 receiver, a Watkins

Johnson WJ125OA frequency synthesizer, a Digital Equipment Corporation PDP-

11/23 controlling computer, and a low radar cross section target positioner. A

block diagram of this arrangement is shown in Figure 6 and a photograph of the

compact range is shown in Figure 7.1 By utillizing the compact antenna range

in a monostatic radar operation, far field backscattered radar signatures of small

targets can be obtained.

The SA parabolic reflector enables the facility to illuminate a 4 foot by 4

11984 aircraft measurement configuration. The range has been significantly improved in recent

years.

7



foot target zone with a coluninmated plane wave, simulating the far field condi-

tion (i.e., locally plane wave effect) of most real operational radar systems. The

sourct, a highly accurate digitally controlled frequency synthesizer, is operated in

a continous wave mode and feeds both the transmitting antenna and the ref.,. -..e

channel of the SA 1780 receiver. The monostatic measurement is obtained by plac-

ing both transmitting and receiving antennas at the focus of the parabolic reflector. !P

The antennas used in this process were rectangular aperture horn antennas, thus

providing high cross polarization rejection. The antennas were placed in different

arrangements to obtain radar signatures for three different polarization schemes.

The polarization schemes measqred are listed below as polarization types:

(HH) Transmitting Horizontal polarization, Receiving Horizontal polarization.

(VV) Transmitting Vertical polarization, Receiving Vertical polarization.

(HV) Transmitting Horizontal polarization, Receiving Vertical polarization.

The polarization types HH, VV are commonly referred to as the co-pol polar-

izations, and the polarization type HV is referred to as the cross-pol polarization.

From these three polarization types an orthogonal scattering matrix can be formed,

and from this matrix other polarization states can be mathematically synthesized.

Note that by the electromagnetic theorem of reciprocity, the polarization types

VH (Transmitting Vertical polarization, Receiving Horizontal polarization) and

HV are equal. Finally, the controller implements a frequency scan measurement

by stepping the digitally controlled synthesizer, and phase locked receiver, and

recording both the amplitude and phase of the backscattered signal.

8
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2.3 Low-Error Backscattered Target Signatures

To obtain the "low-error" signature, additional steps are required other than

those described in the preceding section. These additional steps, as described in

detail by Kimball [19], require a calibration sequence designed to remove unwanted

background clutter from the target measurement and provide a scale correction

factor based on a mathematical representation of a reference target. This process
entails a measurement of the background environment (i.e., measurment of the

chamber without the target present), and a measurement of a reference target

such as a sphere for a co-pol measurement or a 450 tilted strip for a cross-pol

measurment.

2.3.1 Calibration Equation

To remove the background clutter and to scale the data to its correct backscat-

tered value, the following calibration equation is used:

(2.1)

where :

tc is the calibrated complex backscattered target signal voltage.

% k is the computed (exact) complex backscattered signal voltage

from a reference calibration target (i.e., sphere for co-pol,

450 strip for cross-pol measurments).

T is the measured complex backscattered signal voltage with

the target installed in the test chamber.

B/ is the measured complex backscattered signal voltage with

no target present in the test chamber.

10
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R? is the measured complex backscattered signal voltage with

a reference target installed in the test chamber (i.e., sphere

for co-pol, 450 strip for cross-pol).

To ensure the best results in the calibration process, background and reference

target measurements are made after every five target measurements. Additional

signal processing techniques are also employed to achieve the final form of the

low-error target backscattered signature. For example, digital filtering is applied

by the convolution of a Hanning window with the calibrated target data string,

TC, which results in an equivalent time domain gating of the target region. By

selecting the proper parameters, a further suppression of background clutter is

produced without affecting the target signature.

Finally a computer program called DATABASE [20] allows the storage of

frequency formatted data strings at many different aspects angles and the three

base line polarization types HH, VV, and VH, into one single random-accessed

K. data file. The data base program also joins calibrated target data strings measured

in subsectional frequency bands, and reformates the calibrated data strings to a

standard 50 MHz frequency increment. The Database format allows easy access

of calibrated target signatures by specifying the target name (file-name), azimuth

angle, and polarization type in a Fortran call statement. The data bases were

created for the purpose of RTI computer simulation and consists of two sets: a

low-frequency data base set, and a high-frequency data base set. The low-frequency

data base set consists mostly of continuous calibrated unscaled data strings from 1

to 12 GHz. The high-frequency data base set, consists of unscaled data strings from

18 to 35 GHz. Listings from the DATABASE computer program characterizing

the RTI aircraft data bases are shown in Figures 8 through 13.

11
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The Ohio State Univesity ElectroScience Laboratory
Compact Range Experimental Data 1984
Scale factor -Elevation angle - 0 degrees

LOW FREQUENCY FORMATTED DATA BASE (GHz)

ASPECT (Deg) POLAP I ZATION
"N" " VV

0 1-12 1-12 1-12
10 1-12 1-12 1-12
15 1-12 NULL 1-12
20 1-12 1-12 1-12
25 6-12 NULL 6-12
30 1-12 1-12 1-12
35 6-12 NULL 6-12
40 1-12 1-12 1-12
45 1-12 1-12 1-12
50 -] 1-12 1-12
55 6-12 NULL 6-12
60 1-12 1-12 1-12
65 6-12 NULL 6-12
70 1-12 1-12 1-12
75 1-12 1-12 1-12
80 1-12 1-12 1-12
85 6-12 NULL 6-12
90 1-12 1-12 1-12
95 6-12 NULL 6-12
100 1-12 1-12 1-12
105 1-12 1-12 1-12
1i 1-12 1-12 1-12
115 6-12 NULL 6-12
120 1-12 1-12 1-12 .
125 6-12 NULL 6-12
130 1-12 1-12 1-12
135 1-12 1-12 1-12
140 1-12 1-12 1-12
145 6-12 NULL 6-12
150 1-12 1-12 1-12
155 6-12 NULL 6-12
160 1-12 1-12 1-12
165 1-12 1-12 1-12
170 1-12 1-12 1-12
175 6-12 NULL 6-12
180 1-12 1-12 1-12

Figure 8: Concord Low-Frequency Data Base Map

I ~2 :.
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The Ohio State Univesity ZlectroScience Laboratory
Compact Range Experimental Data 1984
Scale factor - Elevation angle - 0 degrees

LOW FREQUENCY FORMATTED DATA BASE (GHz)

ASPECT (Deg) POLARIZATION
UHH" HV "

0 1-12 1-12 1-12
10 1-12 1-12 1-12
15 1-12 1-12 1-12

.. 20 1-12 1-12 1-12
30 1-12 1-12 1-12
40 1-12 1-12 1-12
45 1-12 1-12 1-12
50 1-12 1-12 1-12

1-12 1-12 1-12
70 1-12 1-12 1-12
75 1-12 1-12 1-12
80 1-12 1-12 1-12
90 1-12 1-12 1-12

100 1-12 1-12 1-12
In5 1-12 1-12 1-12
110 1-12 1-12 1-12
120 1-12 NULL 1-12
130 1-12 NULL 1-12
135 1-12 NULL 1-12
140 1-12 1-12 1-12

1S5 1-12 1-12 1-12
160 1-12 1-12
165 1-12 1-12 1-12
170 1-12 1-12 1-12
180 1-12 1-12 1-12
270 1-12 1-12 3-12

Figure 9: DC0 Low-Frequency Data Base Map

13
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The Ohio State Univesity ElectroScience Laboratory
Compac'. Range Experimental Data 1984
Scale factor - Elevation angle - 0 degrees

LOW FREQUENCY FORMATTED DATA BASE (GHz)

-4" ASPECT (Deg) POLARIZATION -
HH HV

0 1-12 1-12 1-12
10 1-12 NULL 1-12

'. 15 1-12 1-12 1-12
20 1-12 1-12 1-12
25 6-12 NULL 6-12
30 1-12 1-12 1-6.3
35 6-12 NULL 6-12
40 1-12 1-12 1-12
45 1-12 1-12 1-12
50 1-12 1-12 1-12
55 6-12 NULL 6-12
60 1-12 1-12 1-12
65 6-12 NULL 6-12
70 1-12 1-12, 1-12
75 1-12 1-12 1-12
80 1-12 1-12 1-12
85 6-12 NULL 6-12
90 1-12 1-12 1-12
95 6-12 NULL 6-12

100 1-12 1-12 1-12
105 1-12 1-12 1-12
110 1-12 1-12 1-12
115 6-12 NULL 6-12
120 1-12 1-12 1-12
125 6-12 NULL 6-12
130 1-12 1-12 1-12
135 1-12 1-12 1-12
140 1-12 1-12 1-12
145 6-12 NULL 6-12
150 1-12 1-12 1-12
155 6-12 NULL 6-12
160 1-12 1-12 1-12
165 1-12 1-12 1-12
170 1-12 1-12 1-12
175 6-12 NULL 6-12
180 1-12 1-12 1-12
270 6-12 NULL 1-12

Figure 10: 707 Low-Frequency Data Base Map

14
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The Ohio State Univesity ElectroScience Laboratory
Compact Range Experimental Data 1984

A Scale factor - Elevation angle - 0 degrees

~LOW FREQUENCY FOR14TTED DATA BASE (G~z) i

•ASPECT (Deg) POLARIZATION

"HH" "HV" "Vw"

0 1-12 1-12 1-12
10 1-12 1-12 1-12
15 1-12 1-12 1-12
20 1-12 1-12 1-12

, ~- 30 1-12 1-12 1-12
40 1-12 1-12 1-12
45 1-12 1-12 1-12
50 1-12 1-12 1-12

-. 60 1-12 1-12 1-12
60 1-12 1-12 1-12
75 1-12 1-12 1-12
80 1-12 1-12 1-12
90 1-12 1-12 1-12

100 1-12 1-12 1-12
105 1-12 1-12 1-12
110 1-12 1-12 1-12

5, 120 1-12 1-12 1-12
130 1-12 1-12 1-12
135 1-12 1-12 1-12
140 1-12 1-12 1-12
150 1-12 1-12 1-12
160 1-12 1-12 1-12
165 1-12 1-12 1-12
170 1-12 1-12 1-12
180 1-12 1-12 1-12

270 1-12 1-12 1-12

Figure 11: 727 Low-Frequency Data Base Map M
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The Ohio State Univesity ElectroScience Laboratory
Compact Range Experimental Data 1984
Scale factor - Elevation angle - 0 degrees

LOW FREQUENCY FORMATTED DATA BASE (GB:)

ASPECT (Deg) POLARIZATION
HHlV" VVV

0 1.5-12 1-12 1-12
10 1.5-12 1-12 NULL
15 6-12 1-12 1-12
20 1.5-12 1-12 NULL
25 6-12 NULL NULL
30 1.5-12 1-12 1-12
35 6-12 NULL NULL
40 1.5-12 1-12 NULL
45 1.5-12 1-12 1-12
50 1.5-12 1-12 NULL '

55 6-12 NULL NULL
60 1.5-12 1-12 1-12
65 6-12 NULL NULL
70 1.5-12 1-12 NULL
75 6-12 1-12 1-12
8o 1.5-12 1-12 NULL
90 1.5-12 1-12 1-12
95 6-12 NULL NULL

100 1.5-12 1-12 NULL
105 6-12 1-12 1-12
110 1.5-12 1-12 NULL
115 6-12 NULL NULL
120 1.5-12 1-12 1-12
125 6-12 NULL NULL
130 1.5-12 1-12 NULL
135 6-12 1-12 1-12
140 1.5-12 1-12 NULL
145 6-12 NULL NULL
150 1.5-12 1-12 1-12
155 6-12 NULL NULL P
160 1.5-12 1-12 NULL
165 6-12 1-12 1-12
170 1.5-12 1-12 NULL
180 1.5-12 1-12 1-12

Figure 12: 747 Low-Frequency Data Base Map

16



All Aircraft

The Ohio State Univesity ElectroScience Laboratory
Compact Range Experimental Data 1984

Elevation angle - 0 degrees

HIGH FREQUENCY FORMATTED DATA BASE (GHz)

ASPECT (Deg) POLARIZATION
"HH" "HV" "VW

0 18-35 NULL 18-35

15 18-35 NULL 18-35

30 18-35 NULL 18-35

45 18-35 NULL 18-35

Figure 13: High-Frequency Data Base Map

2.4 Data Scaling

In order to obtain data in the resonance region of the commercial aircraft used

in the simulation study, the interrogation frequencies lie in the HF band. Since the

measurement of low-error backscatted radar signatures of such large bodies in this

Sfrequency range would require facilities that do not exist, the common practice of

data scaling was utilized. Using the scaling properties of electromagnetic waves,

model aircraft coated with conducting paint can be used to represent the full-scale

aircraft. As long as the wavelength is on the order of the model size, i.e., resonance

region, the scale model provides a very close representation of the true full-scale

backscattered signature. When scaling methods are employed, care must be taken

to make sure the model adequately represents the features of interest. For exam-

pie, when the wavelength becomes very small compared to the overall aircraft size,

smaller features on the aircraft start to resonate and scatter such as engine inlets,

cockpit cavities, and other fine grain variation on the aircraft. If these features are

17
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not carefully represented on the scale models, the scale model no longer provides

an accurate representation of the true backscattered signature. For near resonance -

region (i.e., where the wavelength is almost as large as the aircraft's largest di-

mension) the model can be a rough representation of the target, and still provide

good measurements of the true backscattered radar signature. Tile model sizes

used for the measurements ranged from scale factors of 1:130 to 1:200. A photo of

the models used in the measurement process is shown in Figure 14.

The scaling process is defined by multiplying the amplitude and dividing the

frequency by the model's scale factor (SF). The phase measurement is unaffected

by the scaling process.
That is:

F fu/SF (2.2)

A(Fs) = a(fu) * SF (2.3)

O(F) = O(fu) (2.4)

where the entries on the left side of the equality represent the full-scaled quantities

of frequency (F,), amplitude (A), and phase (0). And the entries on the right

side of the equality represent the unscaled measured model quantities of frequency

(fu), amplitude (a), and phase (0).

The unscaled aircraft measured data, ranges between 1 and 12 GHz for the

low-frequency data base and 18 to 36 0Hz for the high-frequency data base.

Appling the scaling relationship for frequency, the resulting net usable common

bandwidths for both low and high-frequency data base are: 7.7 to 60 MHz (Low-

Frequency Database) and 138.5 to 175 MHz (High-Frequency Database). Jill,

18
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Figure 15 illustrates the three electromagnetic regions; Rayliegh, resonance,

and optical, and where the two scaled frequency bands are categorized. The figure

shows that all the available data is not quite categorized as resonance region data.

A ;'-Most of the low-frequency data base is categorized as near-resonance, and the high

frequency data base lies in the optical region.

Since the data base contains unscaled data, the frequency selection and scaling

routines are implemented in the computer simulation program. Frequency samples

from one to the maximum number of frequency samples shown in Table 1 are

e_ available to choose from. Since frequency samples can be chosen that are not

represented by scaled data points; an interpolation algorithm using a Hamming

window weighting routine is implemented to create the desired frequency sample.

The interpolation window is 100 Mlz wide (unscaled) and centered at the desired

frequency sample. After the sample frequency is calculated, it is then scaled to

the format of decibel relative to one square meter (dBm 2 ). The equations for the

frequency interpolation are described in detail in [21]. In Figures 16 through 18,

" some sample data plots are shown illustrating the calibration processes described

in the preceding sections.

..
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Table 1: Specifications of Data Bases

Low-Frequency Data Base

Frequency formatted data strings from 1 to 12 GHz

Availible polarizations:

Transmit Horizontal, Receive Horizontal (HH)

Transmit Vertical, Receive Vertical (VV)

Transmit Horizontal, Receive Vertical (VH)

Availible Azimuth angles Ca Elevation = 00:

00 to 1800 by 100 and 150 increments

Common aircraft bandwidth:

7.6 - 60 MHz "Scaled"

Maximum number of usable frequencies: 209

U

High-Frequency Data Base

Frequency formatted data strings from 18 to 35 GHz

Availible polarizations:

Transmit Horizontal, Receive Horizontal (HH)

Transmit Vertical, Receive Vertical (VV)

Availible Azimuth angles @ Elevation =0:

00, 150, 300, 450 only

Common aircraft bandwidth:

139 - 175 MHz "Scaled"

Maximum number of usable frequencies: 146 ,..

20
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TARGET CLASSIFICATION

TARGET TYPE

100BOMBERS SANDI RADAR TYPE

44
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Figure 15: Electromagnetic Regions: Rayliegh, Resonance, and Optical

OSf
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CHAPTER III

TARGET CLASSIFICATION TECHNIQUES

3.1 Introduction

The basic process of target classification is shown in Figure 19. The process

defines a measurement system that gathers information on a target, and passes the

information to a feature extractor. The feature extractor selects feature vectors

(vectors derived from the information), and passes the feature vectors to the classi-

fier. Finally the classifier, using "known" feature vectors to identify the extracted

feature vectors, classifies the target.

For the Radar Target Identification problem of classifying aircraft the mea-

surement system may consists of a low-frequency radar that provides initial search

and resonance frequency data (which has been shown to provid- good feature vec-

tors for target identification [1,13]), and a high-frequency high-resolution radar to

provide accurate information on bearing, speed, and range. The feature extractor

may extract all or part of the information obtained by the measurement system.

For example, the low-frequency measurement may be processed by the feature ex-

tractor to remove background clutter, doppler shift, and path length phase shift,

to become the measured noisy "unknown target" feature vector. The classifier,

using a predetermined identification algorithm, then compares the noisy feature

vectc- to the selected catalog of low-error "known target" feature vectors for target %

identification. The target would be identified as a known member of the selected
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.,.

SYSTEM EXTRACTOR CLASSIFIER DECISION

MEASUREMENT FEATURE
VECTOR VECTOR

Figure 19: Basic Process of Target Classification

.- catalog, or a target belonging to some uncatalogued aircraft. Additionally, the

data from the high-frequency radar may be used to tell the classifier to select a

subsector of the feature vectors from the known target low-error data base. For

example, a subsector might contain only feature vectors that have speeds at or

faster than the target speed measured and aspect angles in the range of the bear-

ing angle measured. The problem of determing whether an observed target is not

a member of a selected set of target feature vectors has been discussed in (12] and

will not be presented in this material.

3.2 Target Feature Extractor

* "Y" The results presented in this document are from a simulation program called

the OSU Radar System Simulation and Evaluation (RSSE) computer program [20].

This computer program was developed to implement the various processes de-

scribed above. The RSSE computer program simulates the measurement systems

__ of six different "polarization-oriented" monostatic radars. The RSSE feature ex-

tractor processes the six radars types to derive the various feature vectors used by

the classifier for the RTI process. The six simulated monostatic radars are:

27
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o LINEAR POLARIZED RADARS

1) Transmitting Horizontal, Receiving Horizontal (HH)

2) Transmitting Vertical, Receiving Vertical (VV)

3) Transmitting Horizontal, Receiving Vertical (HV)

* CIRCULAR POLARIZED RADARS

,4) Transmitting Right Circular, Receiving Right Circular (RR)

5) Transmitting Left Circular, Receiving Left Circular (LL)

6) Transmitting Right Circular, Receiving Left Circular (LL)

The simulated radars provide the dominant far-field complex backscattered
cofiiet: -BS -BS, &BS, aBS, -BS -BS. '
coefficients: H VV VH, RR, S LL , and -RL. Where the complex

backscattered coefficient & is related to the Radar Cross Section (RCS) coefficient,

a, and its associated phase, (p, as follows:

ae. (3.1)

The three linearly polarized complex RCS coefficients &HH, "VV, and &VH,

are quantities measured on the OSU compact range (see section 2.2). The other "

three backscat.tered coefficients (i.e., the circular polarized backscattered coeffi-

cients &RR, &LL, and &RL ) were synthesized by using the three linearly polarized

backscattered coefficients in the following polarization transformations:

Er, If
O'LL V4rOv 6H ]_VVH (3.2), ;.E l 2 L .

'All subsequent backscattered coefficients, &BS, -ill suppresses the superscript Bs for ease of

notation.
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VORR = FH H -V VJ) VOT H (3.3)

VFOL R =VRL=2 OTVV+ cOH H] (3.4)

Note that the quantity, V9, provides a range independent feature for RTI

applications. The derivation of the above polarization transformations can be

found in Appendix A.

3.3 Feature Vectors

The feature vectors created by the feature extractor are represented by vari-

ous linear and non-linear combinations of the six backscattered coefficients. The

feature vectors are grouped into two categories: linear polarization radar feature

. -vectors and circular polarization radar feature vectors. The feature vectors, usu-

ally comprised of multi-frequency data samples, are shown in Tables 2 through 6

for both the linear and circular polarized categories. These tables show the var-

%. >,..ious combinations of the backscattered coefficients in the multi-frequency sample

format. The backscattered coefficient has been changed to a voltage quantity by

taking the principle root of the complex coefficient. The various feature vectors

listed in the tables have properties uniquely associated with them. For instance,

the circular polarization category of feature vectors tend to be less sensitive to

changes in the roll angle of symmetric bodies. For aircraft, especially in the nose-

on and tail-on aspect angles, a change in roll angle will change the vertical and

horizontal scattering components in both amplitude and phase while the circular

scattering components only undergo a change in phase. The ratio type feature

vectors have the added advantage of a cancellation of multiplicative errors by the

S, division of scattering component. This cancellation property may lead to better
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error statistics in actual practice over the non-ratio type feature vectors. A ratio

type feature vector also eliminates the need of a reference for exact calibration of

the backscattered coefficients, since the division process makes the feature vector

a relative quantity instead of an exact quantity. Finally the polarization diverse

feature vector (i.e., the concatenation feature vector type) has the property of

creating a large feature space with very few frequency samples.

3.4 Classification Algorithms

Listings of a feature vector for many targets under various observations con-

stitute a feature space. In the simulation study, a subset of the feature space of

low noise feature vectors linked to known target identities is defined as the catalog

set. A set of feature vectors with unknown "noisy" target identities is referred to

as the test set. The classifier function is to take the feature vectors in the test

set and match them with feature vectors in the catalog set through the appropri-

ate use of a classification algorithn. The classification algorithms studied in this

report consist of two non-parametric methods (i.e., no a priori probabilistic infor-

mation) of target identification, one a Euclidean distance-metric, and the other a

cross-correlation routine.

3.4.1 Euclidean Distance Metric Algorithm

The euclidean distance metric coefficient is define by the following equation:

di- E I 7Vi(n) - FVj(n) (3.5)

where .FVi(n) and FVj(n) are feature vectors containing N elements. The identity

of the unknown ith noisy test target feature vector FVfi is chosen by choosing the

smallest dij and classifying the it h unknown test target as the jfh catalog target.
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-" This method of classifying objects from a set of unknown samples is often reffered

to as the Nearest Neighbor (NN) decision rule. Since equation (3.5) utilizes feature

vectors containing both amplitude and phase information, it is referred to as the

.. > coherent NN algorithm.

The coherent distance metric presented above is used to analyze data with

precise phase information obtained by a precise knowledge of range to a chosen

phase reference. This algorithm can be used to analyze data with other types of

phase data, such as relative phase between frequency samples, and will be discussed

.* in the final chapter of this report. For a detailed discussion of methods to obtain

radar phase measurements, the reader is reffered to [22]. For an amplitude-only

P radar simulation, a non-coherent NN algorithm is used in place of the coherent

one. The non-coherent distance metric simply uses the magnitude of the elements

-. of the feature vectors and is written as:

K-, 3.4;2 Tim (I.FVi(n)[ - (FV(n)90 Agoih (3.6)

~3.4.2 Time Domain Cross Correlation (TDCC) Algorithm

Utilizing the multi-frequency nature of the simulated radar target interro-

.gation and the discrete time frequency relationships, a synthesized discrete time

representation of the feature vectors can be obtained through the use of the Inverse

Discrete Fourier Transform (IDFT). For the six baseline polarization feature vec-

tors (i.e., FVHH, FU'V , FV V H, FVRR, FULL, and FVRL ) the time domain

representation provides a method of classification (i.e., cross correlation) that is

- ,-independent of time shifts in the time domain or common phase reference in the

I. frequency domain. This independence of a common phase reference between the
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test and catalog targets is a desirable feature but the cost or penalty is the pro- K

cessing time required by the IDFT.

For feature vectors utilizing non-linear combinations of the six baseline polar-

FVHH FO"' Fv.RR
izations (ex. .V7 - 7, F-LLT , ect ... ), TDCC no longer represents a cor-

relation between linear time shifted test and catalog radar signatures. Although

the time domain cross correlation is still a valid procedure, the loss of the linear

time shift property leads us to use the more robust coherent NN algorithm for the

examination of the non-linear combinational feature vector types.

The normalized cross-corralation coefficient is written as:

co(k ) = DIFT(.v (3.7)
I~V()2  V(-:c 1 (k NIVi(n)I E z jn

n1 n=l

where * denotes complex conjugation. The identification decision rule is to choose

the largest cij(k), thus classifying the ih unknown test target as the jth known

catalog target. Although the TDCC method works with as few as 2 frequency

samples [231, a small number of frequency samples leads to poor resolution and

poor classification results (see Section 5.4).

The equations for both the NN and TDCC algorithms described above are

thoroughly presented and derived in {151.

* . 60432
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! Table 2: Linear Polarized Feature Vectors Types

Transmit Horizontal, Receive Horizontal feature vector:

FVHH~j~I ... ,I)iT Vo=H-H(fN))

Transmit Vertical, Receive Vertical feature vector:

F171"V=(V/erlNVfl),V/0&VV(f2), "', vV W

- Transmit Vertical , Receive Horizontal feature vector:

Linear Polarization Diverse Concatenation feature vector:

FjCAT=( /,HH(j I), Va ), (fI VHI, V/7H 2,V/zV 2,V/, ...,

VHH(fN),V/OVV(fN),V'OVH(fN))

Linear Polarization Diverse Complex Sum feature vector:

FlVCS=:(V aHH-ifJVV(fl)+ UVH(fl), ,,.HH(f2)+ &V.V(f2)+ ''H(f2),

V/'f H U) O V N)+ OVH UN))
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Table 3: Circular Polarized Feature Vectors Types

Transmit Left Circular, Receive Left Circular feature vector:

FVLL=( V9-LLUI),VO'LLUf2)',V IN))

Transnit Right Circular, Receive Right Circular feature vector:

FVRR= ( V&RR(fI), V:R-R(f2), ., O:TfW~j))

Transnit Right Circular, Receive Left Circular feature vector:

F VRL (, ,V-RL -(f2) .. oRL -(fN )

Circular Polarization Diverse Concatenation feature vector: .41.

F V C A T= Vo&LL-(J, Gf-R R(f I), VdGRLUfI, Va TEU2),' URR(f2),v'O-ThY~2),,

GLL UN),'/OKKUN), dRL(fN))

Circular Polarization Diverse Complex Sum feature vector:

FVCS=( aLL(fI)+ &aRR(fI)+VozRL(fI), V~fLL(f2)+VO'RR(f2)+VO/Rj~fj)r-",

VOLL(fN)± J'ORR(fN)+fOc;RL(fN))
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Table 4: Linear Polarization RATIO Feature Vectors Types

HH
FVT7VT f - ..

FVVH= \VOVH(h) Vd:,V U2)N

FVHR - ( &yyfj) & (f2) ______

N/HVH(fl) V-H(f2) v HH(f N)

V VV L .. N VX
FVVR = &vv(fi)' bV-=(f2) &vIN

vVH

FVHTI= VH(fI)' V04H(f2)' V-HH(IN)I

VH _ jjiI
\V'HHv(fl)' &Vff(f2)' V-HN)
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Table 5: Circular Polarization RATIO Feature Vectors Types

LL _ ( - -_

F1 -YtLLUfI)IiL L 2) .. L(N)

(VIYRUO' "-Y h)' RR(fN)

LL /
FV'RL - ( fYL-fI .. C LL(f2)LN)

;RLfI U(f2)' V-RL(fN)

FV1TL I&RLUIl) VORLf2 'VR(N)

FVl-v~folikh R/h R. ~R(fN))
V/ L(f1)' O'LL(f2) V LL ( fN

FVR? = ('O a'RLUl) GRL(fh) .. l-RL(fN)

OYLO'VLJf) L(
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Table 6: Axial Ratio (AR) Feature Vectors Types

Transmitting Right Circular Polarization

,FVRAR=(RAR(fl),RAR(1 2 ),...,RAR(fN))

TIransn-itting Le'ft Circular Polarization

FVLAR=(LAR(fl),LAR(f 2 ),...,LAR(fN))

Concatenation of Axial Ratio Types

FVAR-CAT=(RAR(fI),RAR(f 2 ) ... 9RAR(fN),LAR(fl),LAR(f 2 ),...,LAR(fN))
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CHAPTER IV

EXPERIMENTAL CONSIDERATIONS

4.1 Introduction

In this chapter, the various experimental processes and performance specifica-

tions of the RSSE [201 computer program are described. This includes a discussion

of: how the noise model injects error into the test targets feature vectors, the cal-

culation of average feature vector signal power, and the statistical technique for

Vestimating the probability of misclassification.

Figure 20 shows a flowchart illustrating the basic processing steps for the

target identification code contained in the RSSE computer program. The flow

chart begins with accessing the database files that contain the multi-frequency

radar signatures at various aspect angles and the three polarization types. Aj(fk)

denotes the amplitude data of the Ith frequency sample of tie Jth target, and

03 (fk) denotes the phase component of the klh frequency sample of the jth target.

After the target data bases have been accessed and the scaling routines applied, two

data sets of feature vectors are created through linear or non-linear combinations

of the linear polarized or synthesized circular polarized backscattered coefficients.

The two data sets are called the test and catalog data sets, and the test set feature
vectors are corrupted with noise. To create the noisy test set feature vectors, the

low-error cross-sectional signatures of the data bases (i.e., the linear and circular

polarization components /a/HH, 4 VvH, V -RR, X/aLL, and VF- )
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are corrupted with noise before the combination of components. On the other

hand, the catalog set (the low-error feature vector set) is created directly from

combinations of the low-error cross-sectional signatures of the databases. Once the

test set and catalog set of feature vectors are created, an identification algorithm

is chosen. The statistical analysis is obtained by classifying the test !et feature

vectors several times with the catalog set feature vectors. Also, each experiment

in the analysis is statistically independent.

The following sections describe various parts of the Monte-Carlo system sim-

ulation techniques, such as the noise model, the calculation of signal power, and

the calculation of niisl... ification statistics. This detailed description serves the . -.

reader in interpreting the experimental results of Chapter 5. In the first section,

the noise model is described along with the calculation of average signal power con-

." tained in a feature vector. From this information the Signal to Noise ratio (S/N)

V. can be determi!,ed to serve the reader as a guide for the evaluation of various

* ., identification techniques examiined. In the second section, the statistical method

for estimating the probability of misclassification is presented along with the error

margins associated with !'ie estimating technique.

4.2 Noise Model

The operating environment of a rada.- sysem contains many different types

of errors that can affect the radar target signature. The errors can consist of

unwanted atmospheric, cosmic, solar, man-made, and clutter (unwanted radar

echoes such as reflections from land, sea, rain, birds, and chaff) noise thai can

distort the desired radar ret urn (additive noise types). Also, if the system is based

on an over the horizon target detection scheme, the radar signal can be distorted

through a variety ways, such as: ducting, focusing, differential absorption, Faraday

40

V.,' ,

i j-7,41



rotation, traveling ionospheric disturbances, and diurnal tilts in the ionosphere

(multiplicative noise types).

Although a large part of these noise mechanisms can be calibrated or compen-

sated for in an operational system; errors will appear to some degree of distortion

in the final calibrated radar return. As presented above, there are many factors

which can affect the noise present in a radar return. Since computer modeling

the different noise mechanisms that may occur in a given radar environment is

extrenly difficult and complex, a simple and direct method of introducing noise

into a low-error radar signature is used.

One of the most commonly used methods of simulating a noisy radar envi-

ronment is by the use of the additive white zero mean Gaussian noise model. The

additive white zero mean Gaussian noise model provides uncorrelated statistics

*between data samples (white), an unbiased corruption of the data samples (zero

mean), and a multi-source representation of the noisy environment (Gaussian).

These noise properties exist in most real-world operational radar systems. For

if any correlated or biased noise statistics are found in the final calibrated radar

return, the radar system is inefficient in its calibration routines and the noise level

of the system is higher than it should be. In addition, the additive white Gaus-

- Sian noise model has become a benchmark for the evaluation of the performance

of a wide variety of systems. A complete treatment of computer generation of a

pseudo-random quantity obeying Gaussian statistics within the limits of current

machine accuracy is given in [24].

Implementing the additive white zero mean Gaussian noise model in the sire-

ulation process, the backscattered radar signatures are contaminated by adding in-

phase aiid quadrature Gaussian noise components. This process is only applied to

the linear and circular backscatter components vHH, VV, I-fVH, VO R, LL, ;,
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and 1'R, before a feature vector is created. An example of this process can be

described as follows: .3

"" ~ Suppose the feature vector RR/LL is to be created for the radar target

identification simulation. First, the low-error multi-frequency backscatter signa-

tures required to form the feature vector are obtained from the target databases.

The signatures are then scaled by the appropriate scale factors and sent, to the

noise corruption routine. For the RR/LL feature vector, only the low-error syn-

thesized backscattered components RR and LL in complex form would be present

at this point. The additive white Gaussian noise is then applied by forming the

vector sum: RRi? = RR + NI, where N is the complex Gaussian noise vector and

RR is the noise corrupted complex radar return. Additionally, the vector sum:

LC = LL + N 2 is needed to form the unknown target noise corrupted feature vector

4. FVRR/ £C. The noise vector N 1 and N 2 are "independent" quantities generated

by forming the complex sum:

N = Np + jNq, (4.1)

where j = -1 and Np and Nq are the independent Gaussian distributed random

variables with zero mean and variance a2 (computed by methods described in [24]).

The Np and Nq components are the in-phase and quadrature deviates, where the

power contained in the in-phase component Np is equal to that of the quadrature

component Nq. The average noise power is then given by

N 2  2 + N 2 = 2 72  (4.2)

which is twice the variance. The noise phase ON, is given by:

"N -Ian- 1 N (4.3)
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Throughout the simulation study the noise power, 2o2, is specified in units

of decibels relative to one square meter (dBm 2 ). Figure 21 is a representation

of the contamination of noise onto a noise free vector. The figure illustrates the

Gaussian distribution of both the in-phase and quadrature noise components, thus

corrupting the noise free data point to positions insided the shaded circular region.

An expression for the signal to noise ratio can now be given as

('~+Q) A2 (4.4)
N (N2 + N 2) 2o2

where A 2 is the average signal power of the baseline polarization component used

in creating the selected feature vector. Returning to the example of the RR/LL

feature vector, the average signal power would be calculated as:

E I RR(A)I + 1IILL(f,)
A2 1=2

A if (4.5)
IT 2N

and the average signal to noise ratio is AIR/2C2 . In Tables 7 through 11, a listing
7T

of the formulas used for calculation of average signal power for the various feature

vectors are presented for clarity.

%. It is common practice to view system performance as a function of signal to

noise ratio, where the signal power is based on the combined average power of

all the members of the catalog set. In this report the plots of nisclassification

percentages are specified versus noise power in decibels relative to one square

Smeter, thus independent of target signal levels. Using this signal independent

feature as a reference along with a listing of average power for each target in

the catalog and test sets, the misclassification performance curves can be better

understood. For example, the listing of each target's average power indicates
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Gaussian % ON

Aj( f) %

Figure 21: The Distribution of Noise about a Noise Free Data Point
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whether or not the catalog set contains a close listing of interclass targets (i.e., it

is unreasonable to place a target in a class where the average signal power of the

other target signatures are orders of magnitude greater). When a large difference

in magnitude exists between targets, the nisclassification results tend to indicate

a poorer overall performance then a set of targets with closer magnitudes would

provide. That is, the targets with smaller signal powers misclassify at lower noise

-power levels then the larger targets, and the misclassification percentage numbers

are bias to a higher level. The absolute reference of noise power also allows a fairer

comparison of the different feature vector schemes. With this method the radar

designer can now identify the feature vectors that are the most resistant to noise

corruption; whereas the other method of specifing S/N tends to normalize this

characteristic out of the misclassification curves. For example, if the specification

, of average signal power is not given, the S/N reference plots tend to imply that the

classification performance results for a class of large cross sectional targets are the

same for a class of small cross sectional targets at the same signal to noise level;

'40 even though the smaller targets might be at a noise power level of 10 dB and the

larger targets at a noise power level of 20 dB.
4.3 Statistical Method for Estimating the Probability of Misclassifica-

tion

In the Radar Target Identification (RTI) simulation study, estimating the
tj

, probability of nisclassification requires a number of independent experiments to
be performed to calculate the percent of misclassification. The statistical analysis

S,'is obtained by using a different random seed for generating the independent noise

in each of the experintents performed. The misclassification percentage of a tar-
get is then calculated by counting the number of times the target was incorrectly
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classified and dividing by the total number of independent experiments performed.

The average misclassification percentage is then calculated by adding all the in-

dividual target misclassification percentages and dividing by the total number of

targets.

In equation form, the statistical technique for calculating the average misclas-

sification percentage may be represented as:

PE (4.6)PE Mf nj

where:

AI is the number of signatures contained in the catalog set.

rnj is number of times test target j was incorrectly classified. I
n1  is the number of independent classification experiments performed

on test target j.

In any statistical analysis a margin of error is introduced, whenever a finite

number of independent experiment is performed. In the RTI simulation study the

statistical analysis is obtained by a finite number of experiments. To analyze the

margin of error involed in a statistical analysis the confidence interval [25 must be

given. The equation for the confidence interval for the RTI analysis is given as:

PE= P.=, Po(1  Po) (4.7)
m n

where: ,r
M is the number of targets.

n is the number of independent experiments.

Po is the desired probability of error.

-& k is such that:
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x2=
-( ) I a 1 / _, =2

-- e-Tdz (4.8)

where t is the cumulative distribution function with zero mean of a standardized

normal radom variable [25].

For example, for a 90% confidence level that the misclassification level is 10%.

The marg>' of error, with five targets and one hundred experiments, is found to

be:

a =I-0.9=0.1

2a)1 =0.95

165

Po = 10/ = 0 .1
0O.1(l-0.l )'P E = .1 ± .65 / 0 -Oi -

PE= 10% ± 2.2%

Hence, for a 90% confidence interval that the misclassification level is 10%, the

margin of error is + 2.2%.
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Table 7: Average Power Calculations For Linear Polarized Feature Vectors Types-

Transmit Horizontal, Receive Horizontal feature vector:
N 2

OHH fzV

Transniit Vertical , Receive Vertical feature vector:

N 2

A2 __ (hi!)
I" , N

Transmidt Vertical , Receive Horizontal feature vector:

N2

ATIH - N

Concatenation and Complex Sum Linear Polarization Diverse feature vectors:

AjPD _3N

4.48
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Table 8: Average Power Calculations For Circular Polarized Feature Vectors
Types

Transmit Left Circular, Receive Left Circular feature vector:

AT I12

A22
NAL L  =A = N"

Transnit Right Circular, Receive Right Circular feature vector:
"1 - N 2 J

AR- N

Transmit Right Circular, Receive Left Circular feature vector:

A~= N P
A:2L N

Concatenation and Complex Sum Circular Polarization Diverse feature vectors:

' N 2N 2 N 2

* ~Lfi~ _ RR(fs)12+ N R f)1

ACPD= .3N.
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Table 9: Average Power Calculations For Linear Polarization RATIO Feature

Ar PwVectors Types

N 2 N

N2N
1: V07H(f,)l + 7 VzVHf)

AtH 2N
vi.5

A. same as A2H above.

N 2 N 2

bV0,v-(f1 ) '+2 Z UVH(fi)f2 =1l=

AVVI 2NVH

IV'' AH sarne as A HH above.

ATH same as A.VV above.
VVI VH
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Table 10: Average Power Calculations For Circular Polarization RATIO Feature
Vectors Types

N __ 2 N 2

"A-LL - 2 N

1\1L*f)' AjL- CRL(fdj)
* iA 2 N 2,., LL =  2N

RL 2

A2 same as AL above.

II

-P N -- _2 N 2

A 2 1 1i=
,$ ARR 2N

it RL
A,_ saine as A 2 above.

-,

2 2
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Table 11: Average Power Calculations For Axial Ratio (AR) Feature Vectors
Types

Transmitting Right Circular Polarization
N - 2 N = - 2

N Th--R(f.)1 4 '-V IVHRfi)1
AAR 2N

Transmitting Left Circular Polarization
N2 N R

LAR= 2N

Concatenation of Axial Ratio Types

I LL(fi)j2+ IVIrRfX1+NI

AA-CAT 34 S
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CHAPTER V

MONTE CARLO SIMULATION RESULTS

5.1 Introduction

This chapter presents the experimental results obtained through the Radar

System Simulation and Evaluation (RSSE) computer study. The results are pre-

sented in five sections, where each section examines certain aspects of the radar

identification techniques presented in Chapter 3 applied to the polarization diverse

aircraft data base.

In Section two, a brief description of the nisclassification curves are presented.

In Section three, the aircraft, data base is examined in two specific ways. These

are:

• *- 1. Misclassification performance versus the number of frequencies.

2. Misclassification performance versus frequency bandwidth.

In Section four, nisclassification performance versus classification algorithm

4is examined. In Section five, tradeoffs between the available feature vectors listed

- in Tables 2 - 6 are examined. Finally, in Section six, the examination of misclas-

sification performance versus enlarged azimuth angle sectors.

5.2 Interpretation of Misclassification Precentage Curves

In the following sections, the classification performance of certain radar types

is derived by the interpretation of the computer simulation misclassification curves.
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In order to help clarify the reader's interpretation of the misclassification curves,

a brief discussion of terms and plot characteristics is deemed appropriate.

Each curve presented in this chapter is compiled by combining the multiple

output listings of the RSSE computer program for a given type of experiment.

One type of experiment for a RSSE computer run may be the misclassification
performance of the aircraft data base versus the number of frequencies. Another

type of experiment may be the misclassification performance of the aircraft data

base versus bandwidth. In Figure 22 a typical output listing of a RSSE computer

run is shown. At the top of the listing, a single comment line stating the frequency

bandwidth and the number of frequencies used in the radar simulation. Next, a

cross-reference table mapping identification numbers to test and catalog targets at

a given aspect angle, feature vector type, and average power (see Tables 2 - 6 for

the feature vector types and Tables 7 - 11 for the average power calculations). For

4. example, in the list: ig shown the test target ID#1 correspondes to plane #1 at

a aspect angle of 0' azimuth and 0' elevation. The feature vector is the HH type
(i.e., FV H H ) and the average power contained in the 10 frequency sample feature

vector is 11.15 dBni2

The next portion of the output listing contains the confusion matrices at

various noise power levels. In the confusion matrix, the elements in the top row

correspond to the members of the catalog set and the elements in the first colunin

correspond to the members of the test set. The numbers inside the confusion

matrix represent the number of times a test target was classified as a member

coherent nearest neighbor distance metric. As shown in Figure 23, the 10 dBn 2

noise power level confusion matrix, test target #1 was classified eighty four times

- as catalog target #1, one time as catalog target #2, five times as catalog target
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140.0 - 170.0 MHz 10 rrequencies

TEST TARGET INDEX RAPPING

ID TARGET AZ (Deg) EL TYPE AVG POWER (DB SM)
1 PLANE # 1 0 0 HHP 11.15
2 PLANE # 2 0 0 RHP 11.80
3 PLANE # 3 0 0 HHP 15.93
4 PLANE 1 4 0 0 IP 11.34

5 PLANE # 5 0 0 HHP 19.96

CATALOG TARGET INDEX RAPPING

ID TARGET AZ (Deg) EL TYPE AVG POWER (D_ SM)
1 PLANE # 1 0 0 BHP 11.15
2 PLANE # 2 0 0 IMP 11.80
3 PLANE 6 3 0 0 IMP 15.93
4 PLANE 6 4 0 0 IMP 11.34
5 PLANE 1 0 0 IMP 19.96

Figure 22: Example; Output Header of a RSSE Computer Run

#3, ten times as catalog target #4, and no times as catalog target #5. A total of

, 100 independent experiments were performed (i.e., 84 + I + 5 + 10), and these 100

experiments represent the number of times the feature vector was contaminated

"-..'.- by the additive multivariate white zero mean Gaussian noise model.

For the case shown in Figures 22 and 23, the members of the test and catalog

set are identical. Therefore, the entries along the main diagonal represent the

inumber of times the target was correctly classified while the other entries (i.e., off

the main diagonal) represent the misclassification errors. At the right side of

the confusion matrix a column of misclassification statistics for each test target

feature vector are listed. At the bottom of the confusion matrix the average of

these numbers is listed as the average misclassification percentage, and this is the

number plotted in the misclassification performance curves.

A sample plot of various misclassification performance curves is shown in
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140.0 - 170.0 MMz 10 Frequencies

Nearest Neighbor Algorithm - Vector *NON-COHERENT" distance metric

Classification Table for Noise power - 10.00 DSS.

TTS\CT# 1 2 3 4 5 % MIS-CLASS

1 84 1 5 10 0 16.00

2 4 86 3 7 0 14.00

3 0 0 100 0 0 0.00

4 13 9 S 73 0 27.00

5 0 0 0 0 100 0.00

Average mis-classification percentage 11.40 %

Mis-classification percentage is based on the test targets name.

Figure 23: Example; RSSE Confusion Matrix Computer Listing

Figure 24. The solid curve represents the result from the previously discussed . .

confusion matrix. Every plot shown in this report will have the same format as

shown in Figure 24. A header of information is provided at the top left hand corner

of every plot explaining the characteristics of the radar simulation performed. The

header is comprised as follows:

Line 1. Data Base Type. (i.e., aircraft, ships, ect..)

Line 2. Feature Vector Type. (See Tables 2 - 6)

Line 3. Identification algorithm. Non-coherent,coherent nearest neighbor

or time domain cross correlation.

Line 4. Aspect Angle. Azimuth, elevation, and roll orientation.

Line 5. Start and Stop frequencies. The frequency samples used are evenly

spaced samples including the start and stop frequencies.

Line 6. Number of frequencies.
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Line 7. Number of test and catalog targets.

p Line 8. Number of independent experiments performed.

Line 9. 90% confidence interval at the 10% misclassification level.

If any of the parameters in the header block is replaced by the word "key",

then this parameter is the tradeoff parameter of a multi-curve misclassification

plot. Each curve in the misclassification plot is identified in the key located at

the bottom of the plot. The key will contain an identifing line type with a brief

explanation of what the line type represents. In the example misclassification plot

shown in Figure 24, the key has a listing of two parameters representing curves

with the non-coherent and coherent nearest neighbor identification algorithm.
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DATA BASE TYPEt AIRCRAFT
FEATURE VECTOR TYPE: MH
ALGORITHM TYPE: KEY
AZIMUTH; 0 ELEVATION: 0 ROLL: 0
START FREQUENCY: 1110MHZ STOP FREQUENCY: 170MHZ
NUMBER OF FREQUENCIES: 10
CATALOG SET VECTORS: 5 TEST SET VECTORS: 5
NUMBER OF EXPERIMENTS: 100
90 XCONFIDENCE INTERVAL: 2.2%

0;- ---------

C !0- ------------------------------------ - --

-0 -- - - ---- -- -- - -- -----

CD

U.-

----- -........ - ....

0 - --.-------------

------- -----------------------------------

C1. 100 2. I 0. 00 S.

NOS POEID-M

NO-OHRN NNALORTH
COERN NN AL 1M

Figure 24: Example; Plot of Mislsicaonprrm ceC vs
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5.3 Number of Frequencies, and Bandwidth Study

This section presents a number of misclassification curves in order to examine

various bandwidths, and the number of frequency samples required within the

bandwidth, that provide optimum levels of classification performance.

G Five frequency bands were chosen to examine the performance of the classifi-

cation parameters. The bands spanned the entire range of the usable data in the

' . ~ data base and consisted of one 8 MHz band, three 30 MHz bands, and one 50 MHz

.' :- band. Four of these bands were created from the low-frequency aircraft data base,

"7 and consisted of overlapping frequency bands that resulted in additional insight

on the aircraft behavior to the identification techniques employed. The four scaled

frequency bands from the low-frequency data base are: 8-16 MHz, 8-38 MHz, 30-60

MHz, and 8-58 MHz. The high-frequency 30 MHz band is 140-170 MHz.

From previous discussions, it is expected that the lower frequency data base

should provide good classification performance. Since the frequencies in the 8 - 58

w MHz band are closer to the resonance region (see Figure 15), the radar signature

"- will tend to vary less as the aspect angle changes compared with that of higher

frequencies in the 140 - 170 MHz band. In terms of scattering centers, at the

lower frequencies the spacing between two scattering centers is relatively small in

terms of wavelengths; therefore, the scattering mechanisms are less sensitive to

small changes in aspect. For example, the two source single plane phase inter-

..ference equation, 2-cos (0), shows that a higher frequency will produce a much• • 8

AJ" faster slope change versus aspect, angle due to the term. So for a complex far-....
get (i.e., one with many scattering centers), a small change in aspect angle will

is .generally produce a greater change in the radar signatures at a higher frequenIcy

then a lower one. Therefore, the lower frequency bands should be more reliable
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and should provide better overall classification performance.

In choosing the correct number of frequencies, the time - frequency - distance

relationships of electroniagnetics can serve as a guideline of design. To illustrate L:

this concept Figure 25 shows a time domain representation of a fictious backscat-

tered response of a plane wave (impulse) traveling along the length of tile aircraft.

If a receiver were positioned at the nose of the aircraft to receive the backscattered

energy., it would see the response from the nose as soon as the plane wave reached

the aircraft (i.e., at time 1o). The response due to scattering at 25 meters down

the length of the aircraft would be seen at to + 2t (i.e., the time it takes the wave

to travel down 25 meters, scatter and travel back to the nose of the aircraft), and

the end of the aircraft would be seen at to + 2t 2. From the time-frequency-distance

relationship ' = 21, where I is the length of the target, Shannon's sampling

theorem requires that the frequency sampling rate Af satisfy Af < c

The five aircraft used in this simulation study have an average length of ap-

proximately 50 meters. This implies that the sampling rate has to be at least 3

Mlz. So for bandwidth 8, 30, and 50 MHz, approximately 3, 10, and 17 evenly

spaced frequencies, respectively, are needed to represent the target signature and

meet Shannon's criterion. However, since higher order mechanism do exists, such

as double diffraction, creeping wave, and the ringing associated with the resonance

condition, the time duration of the target's signature tends to be increased beyond

the time it takes to traverse the physical length of the target (i.e., to + 2t 2 ).

Examination of the transformed frequency samples to the time domain reveals

that the response of the aircraft scatterers typically die out before 3.5 transit

tinies across the overall length of the target. Therefore, the sampling rate becomes
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to  
t I t2  166.6 n-sec

0 meters 25 meters 50 meters

to to + 2ti to + 2t 2

333.3 n-sec

"A 0 meters 50 meters 100 meters

Frequency/Time/Distance relationship for 3.5 transit lengths

Tc = =3.5*50 = 175 meters

So for a bandwidth of:

8 MHz, need - 5 frequencies

30 MHz, need 18 frequencies

'50 MHz, need : 29 frequencies

Figure 25: Time Domain Plane Wave Backscattered Response
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Figures' 26 through 30 show a set of misclassification plots for the nose on

(i.e., 0 degree azimuth) aspect angle. The five figures illustrate the misclassification

performance curves for each of the five bandwidth versus the number of frequencies

samples. The non-coherent distance metric was used in each of the plots and the

average signal power of the combined targets in the catalog set is identified on each

plot by the symbol "AP". Note that the clustered breakaway point from the 0%

misclassification level starts at about 15 frequencies for the 30 MHz bandwidths.

If 15 frequencies are chosen, the time-frequency-distance relationship calculates a

length of 150 meters as the effective target length. This calculated length supports

the statement that the backscattered response typically dies out before 3.5 transit

times across the overall length of the targets.

Examination of the five plots simultanously, reveals that the 8 - 16 MHz band

provides the best classification performance versus noise power. The average signal

levels of the feature vector elements in this band are larger than those in the other

bands. For this reason the elements have a better noise immunity and thus provides

better classification performance. Further examination of the plots show that

when the number of frequencies do not meet the Shannon sampling criterion large

drops in classification performance can be expected. At 2 frequencies, the 8 MHz

bandwidth plot shows a 1.5 dB or more drop in noise immunity. When the sampling

rate is much more than the required Shannon rate, little or no improvement ill

clasification performance is gained while the cost and time required to process

the additional frequencies is iicreased.

1% Figures 31 through 3.1. bar graphs are shown comparing the misclassifica-

tion perforniance at four different aspect angles at the 20 dBrn2 noise power level

% . i,,r tt f-'.ency case. Even though the 10 frequency case may not be fair

All remaining figureq are located ' end of Chapter 5.

62

P-

N%



when comparing different size bandwidths (i.e., Shannon's argument for minimum

number of frequencies), it allows the radar designer to compare performance as a

function of frequency samples. Ten frequencies were chosen because they provided

good classification performance in all the examined bandwidths. The results show

that the 8-16 MHz band also provides the best overall classification performance

for the four aspect angle examined.

Another aspect which should be mentioned when comparing the performances

of the five bandwidths is the background clutter and noise characteristics across

the frequency bands. Before a final decision can be made on the best frequency

band for radar target identification, a study on the background clutter and noise

characteristics over the frequency bands of interest must be made. Once the back-

ground noise levels are found; the corresponding nisclassification levels for each

bandwidth can be found from the plots presented above, and the best performing

4 bandwidth can be chosen.

5.4 Classification Algorithm Study

In this section, the three identification algorithms available in the RSSE com-

puter program are examined. Tile three algorithms are the non-coherent nearest

neighbor, the coherent nearest neighbor, and the time domain cross correlation

-'methods as discussed in Chapter 3. As with the first section of results, the per-

formance of the identification algorithms are examined by the simulation results

contained in the percent misclassification performance curves generated by the

RSSE computer program.

Figures 35 through 40 show the misclassification performance results for the

three algorithm types in the 8-16 MHz and 8-38 MHz frequency bands. Each plot

contains three curves of the HH feature vector type, and each curve represents one
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of the three algorithm types. Additionally, the plots show tile misclassification

performance levels of the algorithms at 2, 5, and 10 frequencies for the 8-16 MHz

band in Figures 35, 36, and 37, respectively, and 5, 10, and 15 frequencies for the

8-38 MHz band in Figures 38, 39, and 40, respectively. In each case, at the 5%

misclassification level, approximately a 6 dB improvement in noise immunity is

gained over the Non-coherent Nearest Neighbor algorithm by the Time Domain

Cross Correlation algorithm (TDCC), and another 3 to 5 dB improvement is gained

over the TDCC algorithm by the Coherent Nearest Neighbor algorithm. The plots .

also reveal that an identification error rate as low as 5% can be achieved at a

signal to noise ratio of about 0 dB when accurate intrinsic phase information is

available (i.e., coherent nearest neighbor algorithm). This result shows that the

cost of using phase information is clearly worth the effort in both processing and

measuring. A 10 dB improvement in noise immunity over the non-coherent method

is a significant gain in classification performance.

'While measuring the intrinsic phase of a target for coherent nearest neighbor

processing requires an extremly accurate knowledge of range to a target phase

reference, the time domain cross correlation method has the property of range

independence through the correlation process. Tradeoff such as the processing time

for the correlation process and the range resolution requirements for the coherent

nearest neighbor must be examined if both methods meet tlne desired classification

performance levels.

Another option for ti;zing phase information, without the stringent range

or process requirement, has been presented in earily works [16,17]. The method

uses the coherent vearest neighbor algorithm but employs the use of the relative

'4," phase between the frequency samples instead of the intrinsic phase of the target.
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The relative phase method is defined as

8i \i= - Oi+ (5.1)

Nwhere 8, is the measured phase at wavelength A\i and i 1, .... N - 1 (where

N = number of frequency samples). Equation (5.1) assumes that the range to the

target between frequency interrogations differ by a small amount.

While this method also avoids the processing time required by the TDCC

method by utilizing the coherent nearest neighbor algorithm, the Wi method of

phase processing can present even poorer classification performance than process-

ing without any phase information at all (i.e., non-coherent nearest neighbor).

This situation arises when the relative phase difference is small in value, the noise

corruption will tend to blend the samples together in such a way that the level of

classification performance is worse than the non-coherent processing method.

5.5 Classification Results for Feature Vector Types

5.5.1 Introduction

tsIn this section, the niisclassification performance levels of the 26 feature vec-
i tors available in tihe RSSE computer program are examined. As discus~ed in

Chapter 3, various feature vector types provide properties that may be advan-

tagous to certain target identification situations. For example, the ratio feature

vector types such as the FVHHI/Vl and FVVV/HH have the property to cancel

out multiplicative type errors by virtue of the division of the backscattered coeffi-

. cients. The circular polarized feature vectors tend to be insensitive to roll of the

aircraft especially in the symmetric cases of nose-on and tail-on incident angles.
S .
-. It must be remembered the the characteristics mentioned above for the ratio

type and circular type feature vectors were not explicitly exploited in this report.

65



- - - - - -

Tha i, nis

That is, a multiplicative noise model was not available nor was other aspects angles -

that included roll angles other than 0 degrees.

However, the tradeoff between the feature vector types is examined from the

stand point of performance versus additive multivariant white Gassian noise. In

this tradeoff analysis of feature vector types, the performance is analyzed by keep-

ing the feature space at a constant size and calculating the error probabilities by a

pairwise classification between all possible pairs formed by the five airplanes: Con-

cord, DC10, 707, 727, and 747. Most of the performance curves presented in this

section are representative of the 8-16 MHz band, 10 sample frequencies, and the

coherent Nearest Neighbor distance metric. This combination was chosen because

it provided the highest immunity to additive noise.

5.5.2 Linear Polarized Feature Vectors

Figures 41 through 43 show curves representing misclassification results for

the three linear polarization types. The misclassification performance curves for

the feature vectors F1HB, FVl '', and FO V H, are plotted in Figures 41, 42,

and 43. respectively. Four performance curves are plotted in each figure, each

representing one of four different radar illumination aspect angles. The aspects

are at 0, 45', 900, and 180' azimuth, with 00 elevation and roll. In the KEY,

beside each aspect entry, the average power contained in the catalog set is listed.

Examination of the plots shows that the horizontal-horizontal feature vector,

FI "HH, that consists of the backscattered radar returns of incident illumination

parallel to the fuselage and the wings at low incident elevation angles, tend to

produce higher backscattered energy return than the vertical transmit-receive fea-

ture vector FV '  This property results in a higher noise immunity and better

_ classification performance levels. It is also noted that the signal to noise ratio.
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between the 0% misclassification breakaway point is smaller for the VV feature

vector type than for the HH feature vector type. This would tend to indicate that

the VV feature vector type may have a better discrimination property that its

orthogonal counter part (i.e., the HH feature vector type). A close grouping of

misclassification performance curves for both the HH and VV feature vector types

is encountered for the four different aspect angle exanined. Misclassification levels

lower than 10% at signal to noise ratios of 0 dB are also achieved when accurate

phase information is available.
The third plot (Figure 43), which represents the VH feature vector type, shows

that the classification performance is highy aspect dependent. For the 00 and 1800

aspect angles a large drop in classification performance is encountered. The cross-

pol feature vector has the characteristic of a null backscattered radar return for

symmetric objects. Symmetry is encountered at the 0' and 1800 aircraft aspects;

therefore, resulting in a low backscattered radar return for the VH polarization

scheme. The VH feature vector type can always be expected to have a lower

backscattered signal return than the HH and VV feature vector types; unless, the

target's major axis is oriented along a 450 angle relative to the horizontal and

vertical pola:izations. The 450 orientation would result in backscattered energy

returns comparable to the HIT and VV radar types.

For the linear polarization feature vector types the 900 azimuth angle tends

to produce the best classification results in the all bandwidths studied. While

this is not surprizing, since at this aspect the large surface area of scattering

produces a high energy return signal, earlier studies based on a signal to noise

ratio normalizatio, lid not indicate this result.
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5.5.3 Circular Polarized Feature Vectors

The next series of figures are the circular polarized feature vectors FVRR,

FI "LL, and FI"RL. These feature vectors were found to have performance lev-

els of classification very close to that of the Linear Co-polarized feature vectors

(i.e., FIUfH , and Fl'v'). While the circular polarized radars at HF frequencies

do not exhibit any added advantage of clutter rejection over the linear polarized -.

radars (they do in the microwave region). The circular polarized radars do have a

better aircraft roll independence especially in the head-on and tail-on aspect an-

gles. Because of the symmetry of a aircraft at nose-on and tail-on incidence, most

of the circular polarization backscattered responses from the co-polarized RR and

LL feature vectors types ar the result of secondary and higher interaction effects

with the electromagnetic signal. For example, the first ordered scattered radar re-

turn from an infinite plate perpendicular to the propagation direction of a incident

right circular wave is left circular, and the backscattered energy not be received

by a right circular transmitting antenna.

Figures 44 and 45 show the performance curves for the circular co-polarized

feature vectors FRR and FI"L L. The curves, at the samne aspect angles shown

previously in the linear polarized feature vectors performance curves, exhibit clas-

" sification performance levels very close to that of the co-polarized linear feature

vectors. While the HH and VV linear feature vector types provide better clas-

sification p-rformance at the symmetric aspect angles of 00 and 1800 than the

asymmetrical aspect angle of -;-,, the LL and RR circular feature vector types do

not. Because of the LL and RR feature vectors second order nature to symmetric

_.% aircraft look angles, the 0' and 180' aspect angles iuisclassification performance

%, levels are below that of the 450 aspect angle. Note also that the 00 and 1800
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performance curves in LL feature vector plot are almost identical to the 00 and

1800 curves in the RR feature vector plot. This should be expected, since the

p linear to circular polarization transformations for the LL and RR backscattered

coefficients become identical for any target positioned at a symmetric look angle

(see Appendix A).

The RL feature vector plot (Figure 46) shows that the performance curves still

S .hold levels of classification performance close to that of the co-polarized circular

feature vectors. Tie circular cross-pol feature vector (Fl/RL) maintains a good

grouping of performance curves versus the change in aspect as opposed to that of

'a the linear cross-pol feature vector (FVlH) shown in Figure 43. At the 00 and

180' aspect angle, the RL backscattered signal return is now a first order effect

and dominates the other aspect angles in the region below the 5% misclassification

level.

5.5.4 Ratio Feature Vector Types
I

5.5.4.1 Linear Polarized Ratio Feature Vectors

The ratio feature vectors provided a varying degree of performance levels.

The performance for most of the ratio feature vector types has shown to be highly

p " dependent on the interrogation angle. Figures 47 through 52 show the inisclas-

" :~sification performance plots for the six possible ratio combinations of the linear

polarization backscattered components v/HH, V/TVv, and VoIH (see Table 4).
4* . ' ,€

.. -, As with the previous data shown in this chapter, the plots illustrate a pairwise

classification of alike catalog and test sets containing five feature vectors (i.e.. one

for each of the five aircraft). Again, 100 experiment and the coherent NN distance

metric were used for the RTI simulation.

(ompanriiig the six plots shows that the feature vector type VV/HH give the
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". best classification results at each of the aspects examined (i.e., 00, 450, 900, and

180' aspects). The other plots illustrating the ratio feature vector types with the

TI 'iH and v"--- backscattered components in the denominator tend to have a

wide spread in misclassification performance versus aspect angle. This is especially

evident in the feature vector types HHi/VH and VH/VH. In both cases at the aspect

angles of 0' and 180' the misclassification levels are very high relative to the other

4a,
A curves at 45' and 90'. At these angles (i.e., 0' and 1800) the VH backscattered

Icoefficients are at a very low level due to the symmetry of the target at these

aspects. This causes the VH backscattered coefficient to be very unstable at high

noise levels causing the ratio feature vectors containing the N component in

-., the denominator to attain poor classification performance. In fact, all the ratio

types that have a component in the denominator which contains less signal energy

t han that of the numerator component exhibit poor classification performance. As

for the best performing linear polarized ratio feature vector, FV nIHH the HH

co-pol radar contains the strongest field components and provides the most stable

term for the denominator. This fact is evident by the close grouping of performance

curves for the four aspect angle tested ill the F "V V /HH feature vector, the 0%

nisclassification breakaway point spans a noise power range of approximately 12

dB while the other ratio feature vectors may span as much as 20 to 30 dB in noise

power.

'Compared to tie 111 feature vector performance curves presented in Figure 41,

where the 0C misclassification level for all aspects is at a noise power level of

approximiately 20 dB. the performance of the ratio type feature vectors generate

little excitelment. Biit m1e miust be careful not to make such a direct comparison.

between the two types of feature vectors without considering the reasons that

a ratio feature recter t 'pe i||av ie implemnented. As stated in Chapter 3, tile '"
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ratio feature vector (a relative relationship) may be more useful in an environment

p where intrinsic (exact) measurements may be hard to obtain, such as in an Over

The Horizon (OTH) radar system where ionospheric propagation tend to make

calibration of intrinsic data very difficult. Also the ionospheric induced errors

contain multiplicative components that the ratio quantity has higher immunity

too by virtue of cancellation by division of the two backscattered coefficients.

5.5.4.2 Circular Polarized Ratio Feature Vectors

Figures 53 through 58 show the misclassification performance plots for the

six possible ratio combinations of the circular polarized backscattered components

Vc0 'RR ' LL, and VlRL (see Table 5). As with the linear polarized ratio feature

vectors, the circular polarized ratio feature vectors that have a lower energy com-

ponent in the denominator tend to have a wider span of classification performance

for the four aspect angles examined.

For the circular polarized ratio feature vectors, no one ratio type stands out

as the best performer for the four aspects examined. Although the feature vector

types RL/RR and RL/LL have a better overall grouping of performance curves

for the four aspects, they do not provide the best classification performance levels.

For the best results, a polarization agile radar system capable of measuring all the

polarizations needed to construct the optimal ratio types for a given aspect would

provide the best performance. With this system, and a priori knowledge of the

aspect of the target (i.e., from tracking information), the optimized circular ratio

r- feature vectors woull provide very acceptable levels of performance at all aspect

angles. Figure 59 shows a polarization agile system providing the best classification

performance for the four examined aspects. The system utilizes the LL/RL ratio

type for the near broadside aspects, the RR/LL or RL/LL type for the 45' aspect,
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the RL/LL type for the 0' aspect, and the RL/RR type for the 1800 aspect angle.

With the polarization agile inpllenientation, and the quasi roll independence of the

circular components, the circular polarized ratio feature vector provides slightly

better classification performance then the best linear polarized ratio vector feature

type VV/HH.

5.5.5 Polarization Diverse Feature Vectors

As presented in Chapter 3, the polarization diverse feature vectors utilize

tie full backscattered polarization matrix, that is, for a linear diverse feature

vector the backscattered components HH, H, and &a1H are used in the 'a

construction of the feature vector (see Table 2). The components /'RR, VaLL,

and -, RL are used in the construction of a circularly polarized diverse feature

vectors (see Table 3). One advantage of a polarization diverse feature vector, such

as the concatenation type feature vector, is: by utilizing the three polarization

c,,ilp,ients a large feature space is created with only a few frequency samples.

Figures 60 t hrouglh 63 show four plots of misclassification curves illustrating
t lie performance of two types of polarization diverse feature vectors. Figures 60 and

,,w tie cmit, atellat ioll type feature vector for the linear aiid circular polarized

C, *llpteits. respectively. As in preceeding sections, 100 independent experiments

'A', . ,rid Wwiti tie coherent nearest neighbor distance metric. Instead of %

.W I I, -iaiy spaced frequency only 4 equally spaced frequency samples across

S- 'l11i, hmidn were chosen for this case. Four frequency samples provides a 12

.1 ,.l i feattire vector (i.e.. 4 of frequency samples * 3 polarizaton-

... h,i- k,-z H'ie feature space dimension close to the 10 element

J. " pr,'r ud, ,g sections.

t i., (I f rlassification performance are very cloge to that
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of the HH. RR, LL, anid RL feature vectors types. With performiance levels so

close and the feature space size approximiately equall; the basis for choosinig a po-

larization diverse feature vector may lie in the cost of frequencies versus thle cost of

~ polarization agility. That is, whether the cost of six to eight additional frequiency

interrogations is more or less than tire cost and of ineasureing two additional po

* larizatiojis states.

* Figures 62 and 63 show another type of polarization agile processing. Thiese

plots represent a stintination of thle three linear polarized (see Tlble 2! and three

ci'rcular polarized (see Tabile 3) comkponenits at each frequency samiple. respeclk-eky

Aq wit h thle roricateziat ion featutre vector tyvpes presented afm ve. Figtir, 62 and' 63.

represent a featutre %e( tor at four ev-eiilxN spaced freqiienzicv saniples, But, inistead

of yieldinzg a 12 elemri ent featutre vect 'r only a 4 elemzenit feat ire %ed itr i , created,

%. In Figuire 62 fil linlear po"lazized %tIliilat ion feat tire vector tv pe preseni a 0i'1

- uz~isclassificatroui levePl froii appr-mxmiatel, It0 to V.S dflrn rin nofise poiwer fori four

apIect arrgle, exiiiled, itI l gtire 6iA thle cirtiflar polarized stuntiatitor featutre

%ertiir type presenit. , ittt.cii attfl le-%l Iltisteredl at a nise 1pI.%%r le~el o)f

ajtproxiratelv. 1I I i/?,? f'-r thle fimr a;et While lte- cla-.,ifiati~ui perfoirmiauce

o f the untimratiom feat tie %r( ttr t 'pe, i, h'lktl lest. theni I hat (If tile cu,atezatoui

*t\ %e~ 111 fotI Ir elermwit, are c'itinzre' itt the feature vecl hr versius 12 fo-r thle

cii;tvrtati,i ft- O,t %'vector tYpe

Jr ~t ~ ' 1e~ f I'iIarzat~ii tl~e sefea tret t'rs, f lit, 'rulai polarized

featuire ve tior perf'.rrz at levels lose to, tor hetter. thatn their linear plal-ize(I

4 oI Iiit r ta rtI,. Wit h t I,- ivdt ri.uial quality %if imiili to thle rol o14 f a sniiietrical

t tr g e t fII ' i i Ii 1)1t r pI .d I/I % d v i e f,-a ftirff-e ic ttPrs p )re sevnI t a ;, 1)alIIi i g c Ia I fi f-a.

I lie Imea- pjiri--d'u divers-e teatutre vectttr niaY be Iipr ived by thle deletion11
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*of the %'If comxponent. As seen lin Section 5.5.2, the VII component exhibits poor 4

classiticatjoii performance at the nose-on, and tail-oni aspect, angles. A concate- -

nation and summiiation feature vector utilizing only the VV and HH components

ia prove to- iiiiately better than the NA', HH, and VII combination for an

equivalenit feat ure space (liniensin.

5.5.6 Axial Ratio Feature Vectors

..L*'~
' iie axial ratio, feattire vectors are a non-cohierent combination of the circular

kao-Ikcattered roetficient- (s;ee Table 6).

FRre' 6i 1 t hrmi~gli 66 shiow te ie isclassification results for transmitting left

circilar i LAf 1. traisiittimig right circular (RAR), and a concatenation of the

t%&o0 Fivumres (64 and 6,7, show that the performance of the non-coherent quantities

,/.art, at ntoie pow-er levels ofl about 10 to 15 dB below that of the coherent VV,

fill. 14H. L. RI. feature vector types emiploying the same feature space (i.e., 10

frt-quent-Y satinples . Even wvit Ii the concatenation of the two axial ratio feature

Ne4 t(Jr t. pe, WAR anid L.AH. the classification performance is increased onily 5 dB

%wIile Ithelt feat mire spacedi is doIIubled (Figure 66). Like the ratio feat ure vector types -

presented Ii Section 5.t1 the use of axial ratio feature vectors could provide some

addht mi)t i1i se 11lmlmlu ities qualities in a nmul tiplicative noise environment.

5.6 Classification Results for Larger Aspect Zones

Ili thils sect ion~ the classification performiance of larger aspect zones is analyzed

by exp~andhing the catalog andl test sets of the RSSE compJuter program. The ex-

perinients are performed by adding additional target feature vectors to the catalog

and test sets at incremxents of 10". As in preceeding sections, 100 independent

V experiments were performed withi 10 frequency samtples, and the cohierent nearest
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neighbor distance metric. For this study, however, only the HH feature vector

type and the 30 MHz bandwidth from 8-38 MHz were chosen to illustrate the

performance of the larger aspect zones. As previously presented, the 10 frequency

sample HH feature vector provides very good classification performance levels ver-

sus noise power. Also, the 8-38 MHz band is very close to the 8-16 MHz band in

misclassification performance.

To begin this study, a set of "baseline" classification performance curves were

generated. These curves, which serve as a reference to compare to the clhssification

performance of the larger aspect zones, represent a pairwise classification between

five feature vectors (one per target) in the test and catalog sets for each aspect

angle examined. Figures 67 through 70 show the reference curves for azimuth

aspects ranging from 0' to 1800 by increments of 100 (azimuths angle of 1200,

130', and 1400 are not included). The four plots show that the misclassification

levels of 1% range from 19 to 25 dBrn2 in noise power for all aspects. From

the four figures the best classification performance levels are obtained at nose-on,

tail-on, broadside, and close broadside (ie., angles from 70' to 1100). The worst

classification performance is seen in the forward sector, at the aspect angles of 10'

and 20', where the backscattered signal power is at a ninimum.

Before the curves representing the misclassification performance of the larger

aspect zones are analyzed; two output listings from the RSSE computer program

P7m are presented to clarify the counting of ,isclassification statistics for the larger

2 aspect zones.

Shown in Figures 71 and 72 are the two comiptiter out put listitigs representing

the misclassification statistics for a two anigle anw a three anigle test azid catalog

set, respectively. In Figure 71 the Test l'arget Niiinbers (T' T# ) and the Catalog

Target Numbers (('T#) are numr|bers ranging from I to 10. In each set the target
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numbers 1&2, 3&4, 5&6, 7&8, and 9&10, represent the 0' & 10' azimuth angle

positions for each of the five aircraft. Blocks enclosing the two angles represent

the number of times the targets were correctly classified. Outside the blocks are

the numbers of times the target feature vector was misclassified. For example, test -,

target feature vector #1 was considered correctly classified 97 times (86 + 11), 86

times being the correct vector and 11 times being the wrong vector but the correct

target. Therefore, out of 100 experiments, TT#1 was misclassified only 3 times

(3' ), once as target #2, once as target #3, and once as target #4. The average

minisclassification percentage for this case is the average of the 10 individual TT#

,misclassification percentages listed at the far right column of confusion matrix.

44The average misclassification percentage for the 10 dBm 2 noise power confusion

i:atrix shown in Figure 71 is 9.2%. Finally, the numbers plotted are the average

misclassification numbers tabulated from the incremented noise power confusion

matrices.

Figure 72 shows a confusion matrix for a 3 angle test and catalog set at the

noise power level of 30 dBn 2 . In this section the miisclassification performance

results fiom a 4 angle test and catalog set are also presented, and the misclassifi-

cation statistics for both the 3 and 4 angle cases are treated in a similar manner

as the 2 angle test and catalog set presented above.

Figures 73 through 75 show the results for the two, three, and four, angle

catalog sets for the forward aspect sector (i.e., 0, 10, 20, and 30 degrees). In Fig-

tire 73 the curves for the two angle catalog sets contains three performance curves

representing the 0' & 10', 10' . 20', and 20' & 30' aspects. The performance

curves in Figure 73 tend to reach a level of classification performiance between the

two individual angle cases shown in Figure 67 (i.e., the 0' k 100 performance curve

lies bet ween tihe 0' and 10 perforiniance curves of Figure 67, ect ...). Increasing
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the catalog set to the three angle case, a 300 aspect zone, the classification perfor-

mance decreases to the level of the worst single angle performance curve included

in the three angle set (see Figure 67). Figure 74 shows two misclassification per-

-.. .formance curves representing three angle catalog cases of 00 ' 10' k 200, and

- "100 & 200 & 30' . In each case the misclassification performance curves reach the

level of performance of tlie 10' single angle case of Figure 67. Finally, in Figure 75

the four angle case for the forward sector is shown along with the four angle cat-

alog sets representing the single angle catalog sets shown in Figures 68 through

70. In each cases the 0%'i misclassification level is attained at the level of the worst

performing single angle catalog of the sector under test. The four angle forward

sector catalog set attains misclassification levels at approximately the performance

levels of the 100 single aspect angle catalog set shown in Figure 67. The four angle

catalog set of 400 , 50' 600, and 700, attains misclassification levels at approx-

imately the performance levels of the 60' single aspect angle catalog set shown

U Iin Figure 68. The four angle catalog set of 80', 90' 100', and 110', attains

C, .. misclassification levels at approximately the performance levels of the 1000 single

aspect angle catalog set shown in Figure 69. The rear sector four angle catalog

set attains nisclassification performance levels at approximately the performance

levels of the 170' single aspect angle catalog set showu in Figure 70. The results

. .clearly show that the misclassification statistics of an expanded angle catalog set

*perform at levels approximately equal to the statistics of the worst single angle
No

-', -"catalog in the expanded catalog set.
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DATA BASE TTPE: AIRCRAFT
FEATURE VECTOR TTPE: NH
ALGORITHM TYPE: NON-COHERENT NN
AZIMUTH: 0 ELEVATIONs 0 ROLL: 0
START FREQUENCY: B MHZ STOP FREQUENCY: 16 MHZ
NUMBER OF FREQUENCIES; KEY
CATALOG SET VECTORS: S TEST SET VECTORS: 5
NUMBER OF EXPERIMENTS: 100
90 . CONFIDENCE INTERVAL: 2.2%

0

co0

cr w

0#

° . ..... ... . . .. ... .... . ...... ..

C . ... .. ... ..... ..... -0'&.o

d d

AA
I I !!

0 10.0 20.0 30.0 VO.0 50.0

NOISE POWER IDB-SM)

2 FREQUENCIES 0.00 MHZ INC
S FREQUENCIES 2.00 MHZ INC

- 10 FREQUENCIES 0.69 MHZ INC
15 FREQUENCIES 0.57 MHZ INC

Figure 26: Number of Frequency Study for the 8-16 MNlz Bandwidth
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DATA BASE TYPE: AIRCRAFT
FEATURE VECTOR TYPE: NH
ALGORITHM TYPE: NON-COHERENT NN
AZIMUTH: 0 ELEVATIONs 0 ROLL: 0

ASTART FREQUENCTs 8 MHZ STOP FREQUENCYt 38 MZ
NUMBER OF FREQUENCIES: KEY
CATALOG SET VECTORS: 5 TEST SET VECTORS: 5
NUMBER OF EXPERIMENTS: 100
90 Z. CONFIDENCE INTERVAL: 2.2%

C

C

9s. - . . ...

* @5-

35;C. '

C;

0
C

0*5

C

9 -- ......

lu

'0.0 10.0 20.0 30.0 40.0 50.0

NOISE POWER (09-SM)

- 2 FREQUENCIES 30.00 MHZ INC
-- S FREQUENCIES 7.50 MHZ INC

--- 15 FREQUENCIES 0.331 MHZ INC
10 FREQUENCIES 0.33 MHz INC

v20FREQUENCIES 1.58 MHZ INC
.- 25 FREQUENCIES 1.25 MHZ INC

-- 30 FREQUENCIES 1.03 MHZ INC

Figure 2-1: Number of Frequency Study for the 8-38 MHz B-Al. --W-in
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DATA BASE TYPE: AIRCRAFT
FEATURE VECTOR TYPE: MH
ALGORITHM TYPE: NON-COHERENT NN
AZIMUTHs 0 ELEVATION: 0 ROLL: 0
START FREQUENCY: 30 MHZ STOP FREQUENCY: 60 MHZ
NUMBER OF FREQUENCIES: KEY
CATALOG SET VECTORS: S TEST SET VECTORS: 5
NUMBER OF EXPERIMENTS: 100
90 Z CONFIDENCE INTERVAL: 2.2%

0;

C!o---- -- ------- --- ----- ---- --

V)0

.i .. ... ...

Al

o..........--.-.---

0.Do0 10.0 20.0 30.0 140.0 50.0

NOISE POWER 10B-SM)

- FREQUENCIES 30.00 MHZ INC I
- S FREQUENCIES 7.50 MHZ INC

-- 10 FREQUENCIES 0.33 MHZ INC
15 I FREQUENCIES 2.14 MHZ INC

*- 20 FREQUENCIES I.SB MHZ INC
-.- 25 FREQUENCIES 1.25 MNZ INC
-- 30 FREQUENCIES 1.03 MHZ INC

Figure 28: Number of Frequency Study for the 30-60 MHz Bandwidth
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DATA BASE TYPE: AIRCRAFT
FEATURE VECTOR TYPE; 141
ALGORITHM TYPE: NON-COHERENT NN
AZIMUTH: 0 ELEVATION: 0 ROLL: 0I START FREQUENCY: 8 14HZ STOP FREQUENCY: 58 MHZ
NUMBER OF FREQUENCIES: K~EY
CATALOG SET VECTORS: 5 TEST SET VECTORS: S
NUMBER OF EXPERIMENTS: 100
90 Z. CONFIDENCE INTERVAL: 2.2%

C;

2

C .............i. ..
~ C

C

9 - - - - - -------..... ... .. .. ......... ..... -----------

CU

L AP_

vU
00.0 10.0 20.0 30.0 %0O.0 50.0

NOISE POWER 13B-SM)

2 FREQUENCIES 50.00 MHZ INC
5 FREQUENCIES 12.50 MHZ INC

mp -- - 10 FREQUENCIES 5.56 MHZ INC
.. 15 FREQUENCIES 3.57 MHZ INC

- 20 FREQUENCIES 2.63 MHZ INC
25 FREQUENCIES 2.00 MHZ INCI

30 FREQUENCIES 1.74 MHZ INC
.. 40 F9EQUENCIES 1.28 MHZ INC

-.. 50 FREQUENCIES 1.02 MHZ INC

Figure 29: Number of Frequency Study for the 8-58 M1Hz Bandwidth
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DATA BASE TYPEi AIRCRAFT
FEATURE VECTOR TYPE: BIN
ALGORITHM TYPE: NON-COHERENT NN
AZIMUTH: 0 ELEVATION: 0 ROLL: 0
START FREQUENCYg 140MMZ STOP FREQUENCY: 170MHZ
NUMBER OF FREQUENCIES; KEY

pCATALOG SET VECTORS: 5 TEST SET VECTORS: 5
NUMBER OF EXPERIMENTS: 100
90 Z. CONFIDENCE INTERVAL: 2.2%

0; - - ---- --- - ------

CD

z
-0- - - - -. . . . .. - - - - - - - - - - - - - - - -

p %:

--4 - -- --- ---- --- ---
crf

J 9A0

0.0 10.0 20.0 30.0 '10.0 50.0

4 NOISE POWER COB-SM)

-__ 2 FREQUENCIES 30.00 MHZ INC
- - 5 FREQUENCIES 7.50 MHZ INC
- - - 10 FREQUENCIES 0.33 MHZ INC
. . . 15 FREQUENCIES 2.314 MHZ INC

-- 20 FREQUENCIES 1.58 MHZ INC
.- 25 FREQUENCIES 1.25 MHZ INC

-- 30 FREQUENCIES 1.03 MHZ INC

*Figure 30:. Nuniher of Frtequtiicy Study for the 140-170 Mhiz Bandwidth
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DATA BASE TYPE: AIRCRAFT
FEATURE VECTOR TYPE; MH
ALGORITHM TYPE: KEYI
AZIMUTH: 0 ELEVATION: 0 POLL: 0

START FREGUENCTs 8 MHZ STOP FREQUENCY; 16 MHZ I
NUMBER OF FREQUENCIES: 2M

*CATALOG SET VECTORS: 5 TEST SET VECTORS: S

90 % CONFIDENCE INTERVAL: 2.2%.

c U; RO XERMNS 0
o%

CD_

C

C

8.0 10.0 20.0 30.0 40.0 50.0

NOISE POWER 1DB-SM)

NON-COHERENT NN ALGORITHM
CROSS-CORRELATION ALGORITHM

- -- COHERENT NN ALGORITHM

Figure 35: Identification Algorithmuus; 8-16 Nf llz, 2 nowIrb
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DATA BASE TYPE: AIRCRAFT

FEATURE VECTOR TYPE: H
ALGORITHM TYPE: KEY
AZIMUTH: 0 ELEVATION: 0 ROLL: 0

START FREQUENCY: 8 MHZ STOP FREQUENCY: 16 MHZ
NUMBER OF FREQUENCIESt 5

CATALOG SET VECTORS: 5 TEST SET VECTORS: S
NUMBER OF EXPERIMENTS: 100
90 . CONFIDENCE INTERVAL: 2.2%.°

90 - - - -. ...... . . . . . . .. . . . . . . .......... .. . .. ........ . .. - - - - - - - - - - - - - - - -

0

a)

C - - --------- - --- ---- ---.. .. .......................... ...--- -- ..........I .- .-

% , 9 ; ... . . . ... ...t .......... If -.. .......... .

; .... ....................-- .----- .......... .. .........--- ...... . .....: .....: ..............
/ ,

Loi '

- I;_J .. ..... ...... .. .. .. ... ... .. ......... ................. ---
9 ... .. . . . . . . . . . . ... . . .. . ... .. . . . . . . . - - ------- --

00.0 10.0 20.0 30.0 '0.0 50.0

NOISE POWER (08-SM)

- NON-COHERENT NN ALGORITHM
- - CROSS-CORRELATION ALGORITHM

- - - COHERENT NN ALGORITHM

Figure 36: Identification Algorithms; 8-16 MHz, 5 Frequencies
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DATA BASE TPE: AIRCRAFT
FEATURE VECTOR TYPE: H
ALGORITHM TYPE: KEY
AZIMUTH: 0 ELEVATION: 0 ROLL:
START FREQUENCY: 8 MHZ STOP FREQUENCY: 16 MHZ

NUMBER OF FREQUENCIES: 10
CATALOG SET VECTORS; S TE$T SET VECTORS: 5
NUMBER OF EXPERIMENTS: 100
90 X CONFIDENCE INTERVAL: 2.2%

C

C

C

(0

C

AAP

'0.0 10.0 20.0 30.0 '10.0 50.0

NOISE POWER I08-SM)

NON-COHERENT NN ALGORITHM
-- CROSS-CORRELATION ALGORITHM

-- COHERENT MIN ALGORITHM

Figure 37: Identification Algorithms; 8-16 MHz, 10 Frequencies
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DATA BASE TYPE; AIRCRAFT
FEATURE VECTOR TYPE: MH
ALGORITHM TYPE: KEY
AZIMUTH: 0 ELEVATION: 0 ROLLt
START FREQUENCY; 8 MHZ STOP FREQUENCY: 38 MHZ
NUMBER OF FREQUENCIES: 5
CATALOG SET VECTORS: 5 TEST SET VECTORS: 5
N49ER OF EXPERIMENTS: 100
90 X. CONFIDENCE INTERVAL: 2.2%

0;

-0- ------ - . ..

0o

0r

cc

zj
.. ... .. .. ._0 --- --- - -- ---- --

- 0
I.-

-- ---0- --
c;0

9 - t I- ------ ---- I ----------- --

- -0----V . -------- -------- --------

cvI

0 , ,./AP

00.0 10. 0 20. 0 30. 0 40. 0 50. 0

NOISE POWER 1DB-SM)

- NON -COHERENT NN ALGORITHM
CROSS-CORRELATION ALGORITHM

- - - COHERENT NN ALGORITHM

Figure 38: Identification Algorithms; 8-38 MHz, 5 Frequencies
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DATA BASE TYPE: AIRCRAFT
FEATURE VECTOR TYPE: 111
ALGORITHM TYPE: KEY
AZIMUTH: a ELEVATION& 0 ROLL: 0ISTART FREQUENCY: 0 MHZ STOP FREQUENCYs 38 MHZ
NUMBER OF FREQUENCIES: 10

CATALOG SET VECTORS: S TEST SET VECTORS: 5
NUMBER OF EXPERIMENTS: 100
90 X. CONFIDENCE INTERVAL: 2.2Z

.. .....--
cm

0! ------------- ...... ... .............. .....

- --- --- ----- ---- -
C ; --- --- -- ------ ---- ----- ---

AP/

NOS(PWR00-M

NON-CaMREN N ALOIHM
CRS-ORLTO ALORTH

* ~ ~ ~ CHRN NN.-. .. . L..GORITHM *....

Figure~~~~~~~~~~ 39:dniiain'loihs -8M~,1 rqece
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DATA BASE TYPE# AIRCRAFT
FEATURE VECTOR TTPE: MN
ALGORITHM TYPE: KEY
AZIMUTH: 0 ELEVATION: 0 ROLLs 0
START FREQUENCY: 6 MHZ STOP FREQUENCY: 38 MHZ
NUMBER OF FREQUENCIES: IS
CATALOG SET VECTORS: 5 TEST SET VECTORS: S
NUMBER OF EXPERIMENTS: 100
90 7Z CONFIDENCE INTERVAL: 2.2Z

-- ---------- - ------0 ---- -- -- - ------ - ---- ---

---0 ------ -................ .....

-0 - ---------------------- ------ ---.............. ---------

CD

- - - - - - - - - - - - - - - --- .. . . ... . . . - - - - - - - - -- -

9 r

..................................................... . ... .......... ........-------- --.-... --------

-. . .... .....

------ --- -- -,-- -- ---

0AP/

CD0 100 2. 0.I00 S

09

0 11

All 11141 %1W ON2 2 h'WAP9,



DATA BASE TYPEa AIRCRAFT
FEATURE VECTOR TYPEs N
ALGORITHM TYPE: COHERENT NN
AZIMUTH: KEY ELEVATIONs 0 ROLL:
START FREQUENCY3 8 'MHZ STOP FREQUENCY: 16 MHZ
NUMBER OF FREQUENCIES: 10
CATALOG SET VECTORS: 5 TEST SET VECTORS: 5
NUMBER OF EXPERIMENTS: 100
90 Z CONFIDENCE INTERVAL: 2.2Z

C

- C; -/--------- ---. ...

- ------------ - .- -- . . ........... . . . ---------------------

9 ------- - --------------------- - -- /............. ..................

9 -.-.. -.----.---.- - ..-------- --..... .. /-- ----------------------

NO I OE O-t

. . .I0 E Z V O , 2. BS

ow 
-

-~~~~~~~N L 1 E Z AEPW*2. BS



DATA BASE TYPEs AIRCRAFT
FEATURE VECTOR TYPE: VV
ALGORITHM TYPEs COHERENT NN
AZIMUTH% KEY ELEVATIONs 0 ROLLs 0
START FREQUENCY a MHZ STOP FREQUENCY: 16 MHZ
NUMBER OF FREQUENCIES: 10
CATALOG SET VECTORS: S TEST SET VECTORS: 5
NUMBER OF EXPERIMENTS; 100
90 Z CONFIDENCE INTERVAL: 2.2%

U . C ......... ....... ....... .... ... ............... .... ....... .... .... . . . . . . . . . . . .

Cp

C

0l C - ------- --------

°~ ~~~~~~~~~~~~~~~ ~~~~ ~~~ ................................. .- ....., - --------.. ...............

.P4

9 ..................--............... ¢ ................................. ; ......:............. f1 ---- ----- --- -----

C

S.- . .. ........-....-.. ... ....

, °oo 0.0 20.0 30.0 40.0 SO.o

NOISE POWER ,DB-SM)
0 DEG RZ AVE POW - 20.4 08-SM

45 DEG RZ AVE POW • 19.30Bs-Sm
_-_-_ 90 DEG AZ AVE POW s 30.6 08-Sm10 DEG AZ AVE POW - 18.6 DB-S

Figure 42: Feature Vector Type VV ,
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DATA BASE TYPE: AIRCRAFT
FEATURE VECTOR TYPE: VII
ALGORITHM TYPE: COHERENT NNIAZIMUTH: KEY ELEVATION: 0 ROLL: 0
START FREQUENCY: 8 MHZ STOP FREQUENCY: 16 MHZ
NUMBER OF FREQUENCIES: 10
CATALOG SET VECTORS: S TEST SET VECTORS: 5
NUMBER OF EXPERIMENTSs 100
90 Z. CONFIDENCE INTERVAL: 2.2Z

a

C

' - ------ ------

C;

... ..................... 1--1------------------'. ---------

- - - .--- -- . . - 1'. . .

'0.0C 10. 0 20. 0 30. 0 40.0 50.0

NOISE POWER IDB-SM)

0 DEG AZ AVE POW a 1.8 08-SM
45-'I DEG AZ AVE POW - 17.2 08-SM
9DEG AZ AVE POW - 20.0 08-SM

. .. 80 EGAZ AVE POW a 3.5 08-SM

Figure 43: Feature Vector Type VH
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DATA BASE TTPEs AIRCRAFT -

FEATURE VECTOR TYPE RR
ALGORITHM TYPE: COHERENT NN
AZIMUTH: KEY ELEVATION: 0 ROLL: 0
START FREQUENCY: 8 MHZ STOP FREQUENCY: 16 MHZ
NUMBER OF FREQUENCIES: 10
CATALOG SET VECTORS: 5 TEST SET VECTORS: S
NUMBER OF EXPERIMENTS: 100
90 Z CONFIDENCE INTERVAL: 2.2%

0; - ------ --- - -- -- -- --- -- ----- --

-o ------ - ----- ------- ...--- -- ---------

-0 ------------- ------- ------- --------- -------- ---

0

n------------- ----------- - --- --------------------------- ------- -----------
U,

(0

C;
0.0 0.0 0.0 0.0 q0.0 SO.

45 DEG AZ~ AV PO ---- 1.28- M

-U -: - 0DG>ZAEPO 8. 8S
0 0 E Z AEPWw2. BS

Fiur 44 Fetr VetrTyeR
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DATA BASE TYPE: AIRCRAFT
FEATURE VECTOR TYPE: LL
ALGORITHM TYPE: COHERENT NN
AZIMUTH: KEY ELEVATIONs 0 ROLL:0
START FREQUENCYt 6 MHZ STOP FREQUENCYs 16 MHZ

NUMBER OF FREQUENCIES: 10
CATALOG SET VECTORS: 5 TEST SET VECTORS: 5
NUMBER OF EXPERIMENTS: 100
90 Z CONFIDENCE INTERVAL3 2.2Z.

0;

90 - --- --- -- - --------- ----- -- ------ ----- --- -------- -

-0 - -- ---- - - --- --- -- - -- ----- --- --

0D

! - -- - --,- -- - . ..... ............ ... ... ..

0.. ............... ..... .. ...... .... ....------..... - -.

C; ----- n- ---- ----.... ---- ------- --

9- - --- ....... ./'. .

00.0 10.0 20.0 /30.0 '10.0 50.0

NOISE POWER 1DB-SM)

0 BEC AZ AVE POW a 21.7 08-SM
- '5 DEC AZ AVE POW a 23.3 08-SM

- - - 90 DEC AZ AVE POW - 25.11 08-SM
. . . 180 DEC AZ AVE POW m 20.5 08-SM

-b Figure 45: Feature Vector Type LL
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DATA BASE TYPE: AIRCRAFT
FEATURE VECTOR TYPE: RL
ALGORITHM TYPE: COHERENT NN
AZIMUTH: KEY ELEVATION: 0 ROLL: 0
START FREQUENCY: 8 MHZ STOP FREQUENCY: 16 MHZ
NUMBER OF FREQUENCIES: 10
CATALOG SET VECTORS: S TEST SET VECTORS: 5
NUMBER OF EXPERIMENTS: 100 - -

90 X. CONFIDENCE INTERVAL: 2.2%

o; --------

. ------- . .....

0; --. - --------- ------

--- --- -------------. ---. .- - ---- --- -. ------- --

600 100 2. 0. 00 5.

0. DE AZ AV O- 2. S
Pd5 DE Z AE O 0. B

90 DE Z AE O 9. OS

708 E Z AEPW-2. OS

Fiur 46: Fetr Veto TpeR
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DATA BASE TYPE: AIRCRAFT
FEATURE VECTOR TYPE: HH/VV
ALGORITHM TYPE: COHERENT NN
AZIMUTH: KEY ELEVATION: 0 ROLL: 0
START FREQUENCY: 8 MHZ STOP FREQUENCY: 16 MHZ
NUMBER OF FREQUENCIES: 10
CATALOG SET VECTORS: 5 TEST SET VECTORS; 5
NUMBER OF EXPERIHENTS: 100
90 . CONFIDENCE INTERVAL: 2.2%

, . .......... .. .CD... .....

•~~~- -- - - --------- --.---- -...... . ......... ... ......

.. .. ... " ..... ....... --- ------ .-..------ .-.------ ..------ ..----- .-........ ........... ........

"D

- - - - - -- -.. I -- ------ --------- - --......... ..........-- ---

,< ~0o i

I 
s-.

-Ii o - . . . .

--- - - - I - -.

S0.0 10.0 50.0,

% . ' "N O I S E P O W E R ( 0 -S M )"
, 0 DEC Z VE POW - 24.S DB-SM

4' _ 5 DEC AZ AVE POW -, 23.6 DB-Sm

-- -_ - 90 DEC AZ AVE POW - 31.2 DB-SM
. . . 180 DEC RZ AVE POW a 2Yi.3 OB-Sm

o /

_ ,". Figure 47: Feature Vector Type ttt/VV
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DATA BASE TYPE: AIRCRAFT
FEATURE VECTOR TYPE: HN/VH
ALGORITHM TYPE: COHERENT NN

AZIMUTH3 KEY ELEVATION: 0 NOLL:
START FREQUENCY: 8 MHZ STOP FREQUENCY: 16 MHZ

NUMBER OF FREQUENCIES: 10
CATALOG SET VECTORS: 5 TEST SET VECTORS: 5
NUMBER OF EXPERIMENTS: 100
90 Z CONFIDENCE INTERVAL: 2.2Z

C; - ---- -- ---. . .- -

9 - .--------- [. ' . ..........- ...

a,

- -----.--.------

C; -- --- - ------.----.- -. ..-....................-------

--- *. . -. - -... -- .--------- -- ....

o~~~~~~-- -' ----- . -- --- -----.- . .- ------ ,

0.0~ 10. 0 20. 0 30. 0 '0. 0 50. 0

NOISE POWER (08-SM)

0 DEG AZ AVE POW a 23.11 08-SM
4 '5 DEG AZ AVE POW a 23.1 08-SM

- - - 90 DEG AZ AVE POW v.29.0 08-SM
180 DEG AZ AVE POW a.23.5 08-SM

Figure 48: Feature Vector Type HH/VH
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DATA BASE TTPE: AIRCRAFT
FEATURE VECTOR TTPEs VV/HH
ALGORITHM TTPEs COHERENT NN
AZIMUTH& KET ELEVATION& 0 ROLL. 0
START FREQUENCY& 6 MHZ STOP FREQUENCY: 16 MZ
NUMBER OF FREQUENCIESi 10

CATALOG SET VECTORS; S TEST SET VECTORS: S
NUMBER OF EXPERIMENTS: 100

* 90 Z. CONFIDENCE INTERVAL: 2.2Z

0;---

-0 --- ------- --- -- -- - - ---------- ---

...0. ..

0

.. ..0.. .

0;- - ----- - ----
W

cc

........... ---- ---

CD

% ---- -- ....--0- - ------------- ---
all

l0

00.0 10.0 20.0 30.0 110.0 50.0

NOISE POWER IDB-SMI

- 0 DEC AZ AVE POW a 241.5 08-SM
4 _ 'S BEG AZ AVE POW a 23.6 08-SM
90 DEG AZ AVE POW a 31.2 GB-SM

. . 180 DEG AZ AVE POW m 241.3 08-SM

Figure 49: Feature Vector Type VV/HH
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DATA BASE TYPE: AIRCRAFT
FEATURE VECTOR TYPE: VV/VH
ALGORITHM TYPE: COHERENT NN
AZIMUTH& KEY ELEVATIONs 0 ROLL: 0
START FREQUENCY: B MZ STOP FREQUENCY: 16 MHZ

NUMBER OF FREQUENCIES: 10
A.CATALOG SET VECTORS: 5 TEST SET VECTORS: 5

NUMBER OF EXPERIMENTS: 100
90 X. CONFIDENCE INTERVAL: 2.2Z

C ; - - - - - - - - - - - - - - - - - - -- - - - - - - - -- - - -- - - - - - -

90 ------ ... ...... ---

90 ------- -------

0o

.0 . . . . -- - - - - - - - - - - -- - - - - - - - - - - - . ..- - - -

L..
./ --.- ---- --------- -- -.........---------------

oj -! -- 1- -------------.----

CD.

-0.0 10.0 20.0 30.0 140.0 50.0

NOISE POWER IDB-SM)

0 DEC AZ AVE POW - 17.5 0B-SM
4S'1 DEC AZ AVE POW - 19.8 08-SM

--- 90 DEC AZ AVE POW a 28.2 08-SM
... 180 DEC AZ AVE POW - 15.9 0B-SM

Figure 50: Feature Vector Type VV/VH
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DATA BASE TYPE: AIRCRAFT
FEATURE VECTOR TYPE: VM/HH
ALGORITHM TYPE: COHERENT NN
AZIMUTH: KEY ELEVATION: 0 ROLL: 0'ISTART FREQUENCY: 6 MHZ STOP FREQUENCYt 16 MHZ
NUMBER OF FREQUENCIESs 10

CATALOG SET VECTORSs 5 TEST SET VECTORS: 5
NUMBER OF EXPERIMENTS; 100
90 X. CONFIDENCE INTERVAL: 2.2%

C;

90 ----- -- - ----------------------- ---------- -------- --

N ;. .... ..... .... ...... ... - -------

-j
0J

.. ... . -. -- - -- - - --- -- - - - . ... . .. . . . -- - -- - . ... . - - -

C; -- A ----------
wt

*~ .... -- ----- ---- .-.-

'0.0 10. 0 20. 0 30. 0 40. 0 50. 0

NOISE POWER IDS-SM)

0 DEC AZ AVE POW - 23.41 08-SM
'4- - 4S5 DEG AZ AVE POW a 23.1 08-SM

--- 90 DEG AZ AVE POW a 29.0 08-SM
... 180 DEG AZ RVE POW u 23.5 08-SM

Figure 51: Feature Vector Type VH/HH
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DATA BASE TYPE: AIRCRAFT
FEATURE VECTOR TYPE: VH/VV
ALGORITHM TP:COHERENT NN
AZIMUTH: KEY ELEVATION: 0 ROLL: 0
START FREQUENCY1 8 MHZ STOP FREQUENCY: 16 11HZ
NUMBER OF FREQUENCIES: 10
CATALOG SET VECTORSz 5 TEST SET VECTORS: S
NUMBER OF EXPERIMENTS: 100
90 Z CONFIDENCE INTERVAL; 2.2%

C

... - ---

.................... t--

9 - ---------- ............... . ~ -~ ------

- / --- -- ------ -- ------- ---.

C -- ----.-.--

0.0 10.0 20.0 30.0 '10.0 50.0 R
NOISE POWER (DO-SM)

- 0 DEC AZ AVE POW a 17.5 08-SM
4S - '1 DEG AZ AVE POW 0 19.8 083-SM

--- 90 DEC AZ AVE POW a 28.2 08-SM
...180 DEG AZ AVE POW a 15.9 08-SM

Figure 52: Feature Vector Type VH/VV
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DATA BASE TTPE: AIRCRAFT
FEATURE VECTOR TYPE: RR/LL
ALGORITHM TTPEt COHERENT NN
AZIMUTHs KEY ELEVATIONs 0 ROLL:0
START FREQUENCY: 6 MHZ STOP FREQUENCY: 16 MHZ

NUMBER OF FRECUENCIESs 10
CATALOG SET VECTORS: S TEST SET VECTORS: S,
NUMBER OF EXPERIMENTS: 100
90 Z CONFIDENCE INTERVAL: 2.2%

C

z 0

C

J C!

z/ J

94 - -- - -- S- DEC .AZ .AV P- ..22.5...-S

180 DE AZ IAE POWE ( 070-SM

NO Figure 53: Feature Vector Type RR/LL
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DATA BASE TYPE: AIRCRAFT
FEATURE VECTOR TYPE: RR/RL A
ALGORITHM TYPE: COHERENT NN
AZIMUTH: KEY ELEVATION: 0 ROLL: 0
START FREQUENCTs 8 MHZ STOP FREQUENCY: 16 MHZ
NUMBER OF FREQUENCIES: 10
CATALOG SET VECTORS: 5 TEST SET VECTORS: 5
NUMBER OF EXPERIMENTS: 100

9 0 %. CONFIDENCE INTERVAL: 2.2%.

0; - - - --
I,. 0

9 ---- --------- ------ --- ---------------- ------- ---

90 ------ --

0D

in

. . ...... - - ----- ---- - - --------- ----- ~- - ----- ..

CD

9 . ..... . ...... ... .. .. - -.- -----. -- ...

00.0 10.0 20.0 30.0 '10.0 50.0 4

NOISE POWER IDS-SM)

0 DEC AZ AVE POW - 21.6 05-SM
4-'5 DEC AZ AVE POW - 21.1 00-SM

--- 90 DEG AZ AVE POW s 29.41 05-SM
...180 DEC AZ AVE POW a 21.4 09-SM

.4 Figure 54: Feature Vector Type RR/RL
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DATA BASE TYPE: AIRCRAFT
FEATURE VECTOR TYPE: WLR
ALGORITHM TYPE: COHERENT NN
AZIMUTH& KEY ELEVATIONt 0 ROLL: 0
START FREQUENCY: 8 MHZ STOP FREQUENCYs 16 MHZ
NUMBER OF FREQUENCIES: 10
CATALOG SET VECTORS: 5 TEST SET VECTORS: 5
NUMBER OF EXPERIMENTS: 100

3: ~90 Z. CONFIDENCE INTERVAL: 2.2

z 0

..... . -- -- -- -

2l

J -.

. .......... ... ---------------- --...... ..-.- .... . ....... . .. . .

..................... ............. . . . . ..--------- .------ .--------

00.0 10.0 20.0 30.0 '10.0 50.0

NOISE POWER (GB-SM)

0 BEG AZ AVE POW - 21.6 GB-SM
4S5 DEG AZ AVE POW - 22.5 0B-SM

-- - 90 BEG AZ AVE POW a 27.3 0B-SM
... 180 BEG AZ AVE POW - 20.7 GB-SM

Figure 55: Feature Vector Type LL/RR
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DATA BASE TYPE: AIRCRAFT
FEATURE VECTOR TYPE: LL/RL
ALGORITHM TYPE: COHERENT NN
AZIMUTH: KEY ELEVATION: 0 ROLL: 0i
START FREQUENCYt 8 MHZ STOP FREQUENCYs 16 MHZ
NUMBER OF FREQUENCIES: 10
CATALOG SET VECTORS: 5 TEST SET VECTORS: 5
NUMBER OF EXPERIMENTS: 100
90 Z CONFIDENCE INTERVAL: 2.2%

o; ------------ -w -- -- --------------------- -----------

0D
CD. 

.. ..

b1. 0

.....0......

0 --- - - ---- ..-----

cc

9 - -- .-. .
C-

cc:

-- - - - - -- - - - - - --. - - - -

9I ) 0 . . .. ---- - - -- ---- -- - ---------- -----

-- -----------0- ------

'00 10.0 20.0 30.0 %10.0 50.0

NOISE POWER 1DB-SM)

- 0 DEC AZ AVE POW s 21.7 08-SM
'45 DEG AZ AVE POW m 22.5 08-SM
9DEG AZ AVE POW - 28.1 DO-SM

. .. 80 EGAZ AVE POW a 21.4 08-SM

Figure 56: Feature Vector Type LL/RL
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DATA BASE TTPEs AIRCRAFT
FEATURE VECTOR TYPE: RL/RR
ALGORITHM TYPE: COHERENT NN
AZIMUTH: K~EY ELEVATION; 0 ROLL: 0
STAY FREQUENCY: 8 MHZ STOP FREQUENCY: 16 MHZ
NUMBER OF FREQUENCIES: 10
CATALOG SET VECTORS: S TEST SET VECTORS: 5
NUMBER OF EXPERIMENTS: 100
90 Z CONFIDENCE INTERVAL: 2.2%

C

C

in

----- - ------- --- --------

-- -- - - - -- - - - - - - -- - - - - - - --

9 -------------- ....-------.....------ ---------
- ---------.... - -- ------ ---------- ------ --------- - -

fu

0I. 0 10.0 20.0 30.0 110.0 50.0

NOISE POWER (08-SM)

__0 DEC AZ AVE POW a 21.6 08-SM
4 '5 DEG AZ AVE POW - 21.1 D8-SM

- 90 DEG AZ AVE POW a 29.41 08-SM
...180 DEC AZ AVE POWw 21.41 08-SM

Figure 57: Feature Vector Type RL/RR
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DATA BASE TYPE: AIRCRAFT
FEATURE VECTOR TYPE: RL/LL
ALGORITHM TYPE: COHERENT NN
AZIMUTH: KEY ELEVATION: 0 ROLL: 0
START FREQUENCY: B MHZ STOP FREQUENCY: 16 MHZ
NUMBER OF FREQUENCIES: 10
CATALOG SET VECTORS: S TEST SET VECTORS: 5
NUMBER OF EXPERIMENTS: 100
90 Z. CONFIDENCE INTERVAL: 2.2%

0

0

tn

------------...... ................----- -

00.0 10.0 20.0 30.0 40.0 50.0

NOISE POWER (08-SM)

- 0 DEC AZ AVE POW a 21.7 05-SM
- 45 DEC A? AVE POW - 22.5 05-SM
--- 90 DEC AZ AVE POW - 25.1 05-SM

. . . 180 DEC AZ AVE POW - 21.41 08-SM

Figure 58: Feature Vector Type RL/LL
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DATA BASE TYPE: AIRCRAFT
FEATURE VECTOR TYPE: AGILE
ALGORITHM TYPE: COHERENT NN
AZIMUTH% KEY ELEVATION: 0 ROLL: 0
START FREQUENC~t 8 MHZ 10STOP FREQUENCY: 16 MHZ

CATALOG SET VECTORS: S TEST SET VECTORS: 5
hNUMBER OF EXPERIMENTS: 100

SO . CONFIDENCE INTERVAL: 2.2%

0;

C!0---- ... ----- ------- ...... .. ... .... -----

0

0D

.J. g
.. . . .. . --.- - -

to

- -- ----- ---

0

00.0 10.0 20.0 30.0 '10.0 50.0

NOISE POWER (08-SM)

0 DEC AZ AVE POW a 21.7 08-SM
% - 4 '5 DEC AZ AVE POW - 22.5 08-SM

go - 9 DEG AZ AVE POW a 28.1 DB-SM
... 180 DEC AZ AVE POW a 21.41 08-SM

Figure 59: Feature Vector Type AGILE
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DATA BASE TTPE. AIRCRAFTFEATURE VECTOR TYPE: LINEAR POL-DIVERSE ICONCAT)
ALGORITHM TYPE: COHERENT NN
AZIMUTH: KET ELEVATION: 0 ROLL: 0
START FREQUENCY: 8 MHZ STOP FREQUENCY: 16 MHZ
NUMBER OF FREQUENCIES: 4,
CATALOG SET VECTORS: 5 TEST SET VECTORS: 5
NUMBER OF EXPERIMENTS: 100
90 % CONFIDENCE INTERVAL: 2.2%

. .. .. -- -- .. .

0r

0

. ... . .......... . ... ..... ........

9 0..

J 
1,,- 0

-n -

- .-

5------- 
.. ...

00.O1.0 20.0 30.0 q0.0 50.0
~~NOISE POWER IOB-SM) "

- 0 DEG AZ AVE POW 0 22.4 DB-SM
-__ - 4 DEG AZ AVE POW - 22.9 DB-Sm
-- - - 90 DEG AZ AVE POW - 296"0S
. . . 180 DEC AZ AVE POW - 22.7 DB-SM

. Figure 60: Linear Polarization Diverse Feature Vector (CONCAT) .
110

i 110

0 
'"

, * . " - . ' '." '-- -. . - .- - - • . . . - . - - . . , 
0



DATA BASE TYPE: AIRCRAFT
FEATURE VECTOR TYPE: CIRCULAR POL-DIVERSE (CONCRT)

ALGORITHM TYPE: COHERENT NN
AZIMUTH: KEY ELEVATION: 0 ROLL: 0
START FREQUENCY: e MHZ STOP FREQUENCY: 16 MHZ

NUMBER OF FREQUENCIES: 4
CATALOG SET VECTORS: 5 TEST SET VECTORS: 5
NUMBER OF EXPERIMENTS: 100

90 Z CONFIDENCE INTERVAL; 2.2%

--_ ................ ............... . .. ............... --- ... --- -
0- -- - - -

.J ~ .. ... .. ... .. .. . ... .! , ' ..

"<- ---- ----- ----- ... ........ // I -. ------... ...... .

0

-'-.. -. -. ---- .. --. ..-.--.-.......... ...... .. - - -
--- --- ----- -----

--------.... ...............,  ... ... ..... ..... ..- ----
9 .... .................................---- ..................................

/ II I / -,

0.0 10.0 20.0 30.0 40. 0 50.0

NOISE POWER ID,-S, )

S0 DEG RZ AVE POW - 21.3 DB-SM
•4.. 5 DEG AZ AVE POW - 22.3 DB-SM-o, 90 DEG RZ AVE POW - 28.3 DB-SM.0. . 180 DEG AZ AVE POW- 21.2 08-SM

.:1

i Figure 61: Circular Polarization Diverse Feature Vector (CONCAT)
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DATA BRSE TYPE: AIRCRAFT
FEATURE VECTOR TYPE: LINEAR POL-DIVERSE ISUM)

ALGORITHM TYPE: COHERENT NNi
AZIMUTH: KEY ELEVATIONs 0 ROLL: 0
START FREQUENCY: 8 MHZ STOP FREQUENCY: 16 MHZ
NUMBER OF FREQUENCIES: 4
CATALOG SET VECTORS: 5 TEST SET VECTORS: S
NUMBER OF EXPERIMENTS: 100
90 X. CONFIDENCE INTERVAL: 2.2%

C

z -

-- - -- -- --- -----

Cr.

- - -- -- -- -- - -- - - -- - - - -

--- ------------- -----

9...................................--------- ----I. ..1.... -.--

-- ---- --- --- --- --

00. 0 10. 0 20. 0 300 .0 SO0

NOISE POWER (05-SM)

0 DEG AZ AVE POW a 22.4 05-SM .

__ 45 DEC AZ AVE PaW - 22.9 05-SM

--- 90 DEC AZ AVE POW a 29.6 05-SM
. 180 DEC AZ AVE PaW - 22.7 05-SM.

Figure 62: Linear Polarization Diverse Feature Vector (SUM) - :
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DATA EASE TYPEs AIRCRAFT
FEATURE VECTOR TTPEt CIRCULAR POL-DIVERSE ISUM)
ALGOR1THM TYPE: COHERENT NN
AZIMUTHz KEY ELEVATIONs 0 RaLLt 0I START FREQUENCY: 8 MHZ STOP FREQUENCY&: 16 MHZ
NUMBER OF FREQUENCIES: 'I

yCATALOG SET VECTORS: S TEST SET VECTORS: 5
NUMBER OF EXPERIMENTS2 100
90 Z. CONFIDENCE INTERVAL: 2.2%

--------

... .~ .. .. . ---- -- -

IV I,
0 ! . . . . ... . . . ... . . . ... ..- - --- ---- -- . . . . . .... .. .. . -- ------ ---.- ------

0

------.-.--..--.---........-----.--.............----------.-.---

T - If

00.0 10.0 20.0 30.0 40.0 50.0

NEG OZIAE POWE I 1.B0-Sm)

- 0 DEG AZ AVE POW a 22.3 08-SM

- - - 980 DEG AZ AVE POW a 28.3 08-SM
. 0 DEG AZ AVE POW a 21.? 08-S"

Figure 63: Circular Polarization Diverse Feature Vector (SUM)
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DATA BASE TTPEs AIRCRAFT
FEATURE VECTOR TYPE: LEFT AXIAL RATIO IAR)
ALGORITHM TYPE: COHERENT NN
AZIMUTH: KEY ELEVATION: 0 ROLL: 0
START FREQUENCY: 8 MHZ STOP FREQUENCYs 16 MHZ
NUMBER OF FREQULI,,CIES: 10
CATALOG SET VECTORS: 5 TEST SET VECTORS: 5
NUMBER OF EXPERIMENTS: 100
90 X. CONFIDENCE INTERVAL; 2.2%

0;

9 -

CDi
0

.. ..... ..

000 2. 00 300 '00 5.

N----S- PO.ER.......

DE Z AE O 1. 8S
-. DCAZ AEPO 2. 8S

90-- -E AZ AVE- ---- ----- 28. 0-- - SM-----

0 '4
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DATA BASE TYPE: AIRCRAFT
FEATURE VECTOR TTPE: RIGHT AXIAL RATIO IRAR)

ALGORITHM TYPE: COHERENT NN
AZIMUTH: KEY ELEVATION: 0 ROLL: 0
START FREQUENCY: 8 MHZ STOP FREQUENCT 16 MHZ

NUMBER OF FREQUENCIES: 10
CATALOG SET VECTORS: S TEST SET VECTORS: 5
NUMBER OF EXPERIMENTS; 100
90 7 CONFIDENCE INTERVALS 2.2%

ra
a

C

C

0

CD

..... .. ......... . ..... ! . . .. .., .. ......... .... ,........................ --- -........ ...... .......
I,

P I II I

'.0.0 10.0 20.0 30.0 '10.0 50.0

NOISE POWER 10B-SM)

0 DEG AZ AVE POW a 21.6 08-SM
-5- DS OEG AZ AVE POW - 21.1 08-SM
- -_ 90 DEG AZ AVE POW - 29.4 DB-SM
. . . 180 EG AZ AVE POW a 21.6 DB-SM

Figure 65: Feature Vector Type RAR

115



DATA EASE TYPEt AIRCRAFT
FEATURE VECTOR TYPE: AXIAL RATIO CONCAT L
ALGORITHM TYPE: COHERENT NN
AZIMUTH: K~EY ELEVATION: 0 ROLL: 0
START FREQUENCY: 8 MHZ STOP FREQUENCY: 16 MHZ
NUMBER OF FREQUENCIESt 10
CATALOG SET VECTORS: 5 TEST SET VECTORS: 5
NUMBER OF EXPERIMENTS: 100
90 Z CONFIDENCE INTERVAL: 2.2%

0

U..

An0u 0

. .... ...-------- --------- ........... - -----------------------

CUU

* 0.0 10.0 20.0 30.0 40.0 50.0

NOISE POWER 10B-SM3

0 DEG AZ AVE POW a 21.7 05-SM
'45 DEG AZ AVE POW m 22.1 08-SM

--- 90 DEG AZ AVE POW * 28.5 08-SM
...100E AZ AVE POW - 21.2 D8-SM

Figure 66: Concatenation of Axial Ratio Feature Vectors
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DATA BASE TYPE: AIRCRAFT
FEATURE VECTOR TYPE: MH
ALGORITHM TYPE: COHERENT NNIAZIMUTH: KEY ELEVATION: 0 ROLL: 0
START FREQUENCY: 8 MHZ STOP FREQUENCY: 36 MHZ
NUMBER OF FREQUENCIES; 10

CATALOG SET VECTORS: 5 TEST SET VECTORS; 5
NUMBER OF EXPERIMENTS: 100
90 Z CONFIDENCE INTERVAL: 2.2%

C;

-- - -- --7--- --- ....
0D

.151

0

0
----- - -

----- -------- ----- -- -- ---- --- - -..

0;

C0 100 2. 0. 001.

10 DE Z AEPW-2. 9S

.-. . . ./ . 0DGA V PW-2. OS
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DATA BASE TTPEs AIRCRAFT
FEATURE VECTOR TYPE& H.

ALGORITHM TYPEz COHERENT NN
AZIMUTH: KET ELEVATION: 0 ROLL: 0 I
START FREQUENCYs 8 MHZ STOP FRE0UENCTs 38 MHZ
NUMBER OF FREQUENCIES: 10
CATALOG SET VECTORS: 5 TEST SET VECTORS: 5
NUMBER OF EXPERIMENTS: 100 W

90 . CONFIDENCE INTERVAL: 2.2.

C! -0

° !
0

z

9 -- - - ... . .. . . ...... - .

a -.. . . . ------. - . ....

C9 ! i! q

C'00 10.0 20.0 30.0 li0.0 50.0 %1

NOISE POWER lOB-SM)

40 DEG RZ AVE POW - 25.4 DO-SM
50 DEG AZ AVE POW - 21.7 DO-SM
60 DEG AZ AVE POW - 22.0 DB-SM

S. . 70 DEG AZ AVE POW m 25.6 08-SM

Figure 68: 40, 50, 60, 70 Aspect Misclassification Results
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DATA BASE TYPE: AIRCRAFT
FEATURE VECTOR TYPE: H
ALGORITHM TYPE: COHERENT NNIAZIMUTH: KEY ELEVATIONs 0 ROLL, 0
START FREQUENCY: 83 MHZ STOP FREQUENCY: 38 NHZ
NUMBER OF FREQUENCIES: 10
CATALOG SET VECTORS: S TEST SET VECTORS: 5
NUMBER OF EXPERIMENTS; 100
90 Z CONFIDENCE INTERVAL: 2.2%

C;

-- -- -- - - -----

cc

-- ----0 ..

0;---- - -

W

CD /

6 .0 1 .0 20.0 3 .0M. 0 SO.

90 IE Z AEPWa3. 9S

. . .10 DE NOISAE POWE - 5.B0-SM

Figure 69: 80, 90, 100, 110 Aspect Misclassification Results
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DATA BASE TYPEs AIRCRAFT
FEATURE VECTOR TYPE: 1N
ALGORITHM TYPE: COHERENT NN
AZIMUTHs KEY ELEVATION: 0 ROLL: 0
START FREQUENCT: 8 mHZ STOP FREQUENCY: 38 MHZ
NUMBER OF FREQUENCIES: 10

CATALOG SET VECTORS: 5 TEST SET VECTORS: 5
NUMBER OF EXPERIMENTS: 100
90 Z CONFIDENCE INTERVRL: 2.2%

C

C

zC

C

C; .. ..... 0. .
C

~ ~ ~~~ ~~ -.. . . . . .. . ................... ------- ...............

": .......... -"- - .......... ...... .....

C

- ----- ----

-n -. .---------- - - -- . .......

C'10o 10.0 20.0 30.0 40.0 50.0

NOISE POWER lOB-Set)

4 1,0 DEG AZ AVE POW - 23.1 DB-Sm

- 160 DEG AZ AVE POW - 22.9 0O-SMt- _ 170 DEC AZ AVE POW - 22.6 08-SM

. . . 100 DEG AZ AVE POW a, 23.9 08-SH

Figure 70: 150, 160, 170, 180 Aspect Misclassification Results,.i
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I

8.0 - 38.0 MHz 10 Frequencies

Nearest Neighbor Algorithm - Vector *COHERENT" distance metric

Classification Table for Noise power - 25.00 DBSH

TTS\CT# 1 2 3 4 5 6 7 8 9 10 % MIS-CLASS

1 I 86 11 1 0 1 0 1 0 1 0 0 3.00

2 7 67 0 5 2 8 3 8 0 0 26.00

3 0 1 95 21 1 0 0 0 0 1 3.00

4 1 6 2 83 2 1 0 3 1 1 15.00

? . 5 1 0 0 1 97 0 0 0 1 0 3.00

.4 6 0 7 0 0 2 84 I 6 0 0 1 14.00

7 0 2 0 3 0 5 77 13 0 C 10.00

a 1 7 0 6 0 1 10 7s 1 0 0 15.00
* ,9 0 0 0 1 0 0 0 0 1 97 2 1.00

-'10 0 0 2 0 0 0 0 0 I0 98 2.00

Average misclassification percentage 9.20 %

Misclassification percentage is based on the test targets name.

Figure 71: Example; Double Angle Confusion Matrix
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8.0 - 16.0 MHz 10 Frequencies

Nearest Neighbor Algorithm - Vector "COHERENT" distance metric
L,

Classification Table for Noise power - 30.00 DeSM

TT#\CT# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 S MIS-CLASS

1 137 16 6 1 0 6 0 12 14 2 2 3 0 1 0 1 41.00I
2 126 27 9 1 0 6 0 9 17 2 0 2 1 0 0 1 38.00

3 1 13 36 0 8 3 1 8 2 15 11 1 0 0 1 50.00
------ ---------

4 0 0 0 162 2 0 1 0 0 0 0 0 0 0 14 2 16.00

5 4 2 7 2 46 7 1 5 5 0 4 5 2 2 8 45.00

6 0 1 0 1 767 0 0 0 0 12 12 0 0 0 25.00

-----------------------------------------7 7 5 0 0 2 0168 6 4 10 0 1 6 1 0 22.00

8 7 6 12 0 3 0 4 46 14 1 4 0 0 0 3 36.00

9 1 1 1 0 6 1 5 8 60 1 2 7 2 1 4 27.00
------ -----------

10 0 3 14 0 0 1 0 3 1 169 9 0 1 0 0 0 22.00
1 1

11 1 1 12 0 3 e 0 4 3 Ill 49 8 0 0 0 32.00

12 0 0 3 0 1 17 0 0 5 0 7 63 0 0 4 30.00 ,
------ -----------

13 1 0 0 0 0 0 7 2 1 0 0 2 185 2 01 13.00

14 2 0 0 8 2 0 0 1 0 0 0 1 2 69 15 I 14.00

15 1 0 1 5 6 0 0 2 0 0 2 3 0 7 73 I 20.00

Average misclassification percentage : 28.73 %

Misclassification percentage is based on the test targets name.

Figure 72: Example; Three Angle Confusion Matrix "
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DATA uASE TTPE: AIRCRAFT
FEATURE VECTOR TYPE: MH
ALGORITHM TYPE: COHERENT NN
AZIMUTHs KEY ELEVATION: 0 ROLL:
START FREQUENCY: 8 MHZ STOP FREQUENCY: 38 MHZ
NUMBER OF FREQUENCIES: 10

CATALOG SET VECTORSs 10 TEST SET VECTORS: 10
NUMBER OF EXPERIMENTS: 100
90 % CONFIDENCE INTERVAL: 1.6

C

40

z

.. .. .. ....

-,;

nC;

Cr In

C. ............ .... ....... .... ..... / . ......----------/,! ----- - ---------

C

. ./. . . ------ ... ............... --- --

- --- - ------------ 
...........

'0.0 10.0 20.0 30.0 'i0.0 50.0

NOISE POWER KGB-SM)

0 4 10 DEG AZIMUTH CATALOG
-- 10 A 20 DEG AZIMUTH CATALOG
- 20 A 30 DEG AZIMUTH CATALOG

Figure 73: Double Angle Catalog Misclassification Results
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ORTA BASE TYPE: AIRCRAFT
FEATURE VECTOR TYPE: NH
ALGORITHM TYPE; COHERENT NN
AZIMUTH: KEY ELEVATION: 0 ROLL: 0
START FREQUENCY: 8 MHZ STOP FREQUENCY: 38 MHZ
NUMBER OF FREQUENCIES: 10
CATALOG SET VECTORS: 15 TEST SET VECTORS: 15
NUMBER OF EXPERIMENTS: 100
90 X CONFIDENCE INTERVAL: 1.3%

0i

CD

5 -)

,0
.n
°;

z

c;

U. 9I

0 CD

in

9 - --- -------

9n / - - - - - ------ ------------ -- -

0

-6O. o I. 20.0 30. O 0. O 0.0

NOISE POWER IDB-$M)

0.10.20 DEG AZIMUTH CATALOG
10.20.30 DEG AZIMUTH CATALOG

~~Figure 74: Three Angle Catalog Misclassification Results -

124

I K
-. 0



-. . - - d-[-VW n W WW Uf '

% DATA SASE TYPEt AIRCRAFT
FEATURE VECTOR TYPE: NH
ALGORITHM TYPE: COHERENT NN
AZIMUTH: KEY ELEVATIONz 0 ROLL: 0
START FREQUENCY: 8 MHZ STOP FREQUENCY: 38 MHZ
NUMBER OF FREQUENCIES: 10
CATRLOG SET VECTORS: 20 TEST SET VECTORS: 20
NUMBER OF EXPERIMENTS: 100

90 . CONFIDENCE INTERVAL; I..

0

.- .. .. .. .. . .... .........
0

.l .... ... .. 0. .... . . .. . .

% " ! - -0-----, --....... ..
--- -- -- -/- -- --. .... .----

a _--I 0 9 .0 .10D GR R R O

C ! ... . ...... ... ... ---

IOU"9 -, ........ - --- ----. -----. ----. ---. -

0k

I

'. 0.0 10.0 20.0 30.0 '10.0 50.0

NOISE POWER (08-SMI

- 0,10.20.30 DEG AZ CAIALO-C
%.. 40.50.60.70 DEC AZ CATALOG
% -. - - 090-100.110 DEG AZ CATALOG

.. . 150.160.170,180 DEG AZ CATALOG

Figure 75: Four Angle Catalog Misclassification Results
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CHAPTER VI

SUMMARY OF RESULTS

This report has examined five aspects of radar target identification techniques

applied against a polarization diverse aircraft data base. Plots have been gener-

ated to examine misclassification performance levels versus such parameters as:

the number of frequencies, frequency bandwidth, classification algorithms, various

feature vectors, and an expanded aspect catalog set. Some high points from these

five aspects can be summarized as follows:

* The backscattered response of the aircraft scatterer typically die out before

3.5 transit times across the length of the target. To meet Shannon's criterion

the sampling rate Af must satisfy Af < -- , where 1 is the largest dimension of

the aircraft. From this criterion the minimum number of frequencies for a given

bandwidth can be derived from the following relationship:

Number of Frequencies = BC , where BW is the frequency bandwidth.

The lower frequency bands of the aircraft data base provided the highest im-

munity to the additive white zero mean Gaussian noise model. The near resonance

frequency bandwidth of 8 - 16 MHz for the measured polarization schemes of HH

and VV contained the largest, monostatic radar returns, thus providing the highest

noise immunity. As a function of aspect, the highest signal energy was encountered

most often at broadside incidence (i.e., 900 azimuth, 00 elevation and roll), making

the 90' aspect the most immune to additive noise and the best aspect for target
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identification.

* The classification algorithm study has shown that the Coherent Nearest

Neighbor distance metric provides approximately a 10 dB improvement in noise

immunity over the Non-Coherent distance metric and approximately a 5 dB im-

provement over the Time Domain Cross Correlation method. Although coherent

intrinsic (exact) phase measurements are difficult to obtain, a 10 dB improvement

is clearly a significant gain in performance.

Of all the feature vector types examined, the co-pol linear feature vectors

FITHH and FVV", the circular feature vectors FVLL, FVRR, and FVRL, and

the polarization diverse feature vector FVCONCAT (both linear and circular),

provided the best classification performance against the additive white zero mean

Gaussian noise model. Out of the seven feature vectors mentioned above, no one

type exhibited any significant advantage in classification performance over the

others. However, the circular feature vectors do provide some independence in

regard to the roll of the aircraft, especially in tihe symmetric look angles of nose-

on and tail-on. The polarization diverse feature vectors require a smaller number

of frequency samples to provide the same classification levels. It also should be

metioned that the ratio feature vectors types were not fully examined. The ratio

types may provide some additional benefits in a multiplicative noise environment

by virtue of the division of the backscattered components.

* * Increasing the catalog set by adding additional feature vectors that cover

,- a range of aspects tend to decrease the classification performance level relative to

,, v. that of the worst single angle catalog set level.
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APPENDIX A

BACKSCATTERED 
COEFFICIENTS

A.1 Linear Polarized Measured Coefficients

The RSSE feature vectors are derived by using various linear and non-linear com-
binations of the complex backscattered coefficients from six simulated RSSE radar
types. Three of these feature vectors were obtained from direct measurements on
scale model aircraft in the OSU compact range. They are the linear polarized complex
backscattered coefficients: &B H, ' S, and &B-"

A simple representation of the measurement process for the transmit horizontal, re-
ceive horizontal, backscattered coefficient, -B, ca ated as shown in FigureS76. H

k For time harmonic fields, we have: E~ = Eoeju't

In the far field, we can write:

kt.z kfE =E :i -- Et -Jki=EH

So; [i$~=[-jksk
4 4

The Matrix multipication yields:
r B - BS-

H 41r v-HV 41r=-

-BS .BS
=EH + Ev
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At the terminals of the Mono-static Horizontal Polarized Radar, we have:

r® =E -:BS f H le-jk(zi+za)

Calibrating out the Radar Range dependence ( ie. dropping the e-jk( i+z, ) term ),
w e o b t a in ;" 

-B_ - BS = 41r
Et UHH or HH

Similarly, we can illustrate the measurment process for the other two backscattered. coefficients: 6,BS and &B S

Also; = &BS by the reciprocity theorem.

.1'.

I

':Z
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A.2 Circular Polarized Synthesized Coefficients

To obtain the circular polarized feature vectors, synthesized circular polarized
radars are created by using the linear polarized backscattered coefficients in a polariza-
tion transformation. The derivation of the Left - Left circular antenna shown in Figure
77 is as follows:

Transmitting Left Circular Polarization (LCP)

e (I'z) =~ [a2Jisin (ut -kz) + P cos (0' - kz)]

Or in Phasor Notation;

t ~ e-j(kz9 0 0) + C-k (- f~=~[j' + ] -kz

=1 =1
=-jEff +~ Er..

EeiE [-ji' 4- -jEH + Ev

[L's] [ K ] e-k

* So:

Lij!] =[%.HEl

The Matrix multipication yields:f f

=r =B &BS V&/1
E =E HV4? + V 7

E" + E
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At the terminals of the Mono-static LCP Synthesized Radar, we have:

antenna .

... I/ H 4w'e'k

2k +-2 ek(i+zs)

Calibrating out the Radar Range dependence ( ie. dropping the e-ik(i+zs) term )
we obtain;

IV~~~r BS &B BS

V'LL = VV -VHH V VH

Similarly, we can derive VO" S, an B/ S;

V&BS~ &,BS 057 ,B -BS -B1
LR RL V1 + VAH
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E E-

Far Field

,-E -- E

Figure 76: Representation of the Measurement Process for the "BS Coefficient

b
E -- E --,,

Target3d! T/-- ,
Er 900

Far Field & HH &HV

&VH &VV
-- E -- E _

Figure 77: Representation of the Measurement Process for the &BS Coefficient
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